
Chapter 2: Introduction to R

Mark Andrews

Contents
What is R, and why should we use it? 1

A power tool for data analysis . 2
Open source software . 2
Popularity . 3

Installing R and RStudio 3
Installing R . 4
Installing RStudio Desktop . 4

Guided Tour of RStudio Desktop 4
Rstudio menus . 6

First steps in R 7
Step 0: Using the R console . 8
Step 1: Using R as a calculator . 8
Step 2: Variables and assignment . 10
Step 3: Vectors . 11
Step 4: Data frames . 17
Step 5: Other data structures . 18
Step 6: Functions . 20
Step 7: Scripts . 21
Step 8: Installing and loading packages . 24
Step 9: Reading in and viewing data . 26
Step 10: Working directory, RStudio projects, and clean workspaces 29

References 31

What is R, and why should we use it?
While there are many ways of defining what R is, for most practical purposes, it is sufficient to describe R
simply as a program for doing statistics and data analysis. If you’ve either done any kind of statistics or data
analyses, the chances are extremely high that you’ve used some computer program to do so. The range of
such programs is large. These include SPSS, SAS, Stata, Minitab, Python, Matlab, Maple, Mathematica,
Tableau, Excel, SQL, and many others. These do not all do the same thing, and so are not necessarily
inter-changeable. Some, like Python, are general purpose programming languages that have become widely
used for data science. Others, like SQL, are database language. Others, like SPSS, is primarily a graphical
user interface program for statistics, originally targeted at researchers in the social sciences. R can be seen as
just another program in this large and heterogeneous list. What R’s advantages are, however, and what sets
it apart from many others programs, comes down to three inter-related factors: it is immensely powerful, it is
open-source, and it very and increasingly widely used. Let us now consider each of these three points further.

1

A power tool for data analysis
The range and depth of statistical analyses and general data analyses that can be accomplished with R is
immense.

• Built into R’s standard set of packages are virtually the entire repertoire of widely known and used
statistical methods. These include general and generalized linear regression analyses, which themselves
include Anovas, t-tests, correlations, etc., descriptive statistical methods, nonparametrics methods, and
so on.

• Also built in to R is an extensive graphics library (see the graphics package; which is usually termed
the “base R” plotting package) for doing virtually the entire repertoire of statistical plots and graphics,
and these graphics tools can be combined programmatically to lead to any desired plot or visualization.

• In addition to its built in tools, R has a vast set of add-on or contributed packages. There are presently
over 17000 additional contributed packages (to be precise, there are 17487 packages as of May 2, 2021).
While they differ in size, each one will usually provide at least dozens of additional tools and methods
for statistics, data manipulation and processing, or graphics. Some of these packages could be described
as almost mini-languages in themselves. For example, and as we’ll see below, packages like ggplot2 is
effectively a mini-language for data visualization, while packages like dplyr and tidyr are effectively
mini-languages for data wrangling and manipulation. In addition, because R is the de facto standard
computing platform for the discipline of statistics, almost every new or existing statistical technique
developed by statisticians is made available as a package in R. With all of these packages, we are
hard pressed to find anything at all related to statistics and data analysis, including data graphics and
visualization, that is not currently available in R.

• As large as the set of R packages is, the capabilities of R does not stop here. R is a high level and
expressive programming language that is specialized to efficiently manipulate and perform calculations
or analyses on data. This entails that R can be used programmatically to greatly increase the speed
and efficiency of any data analysis. More importantly, R can be extended by writing custom programs
and functions, which may then be packaged and distributed for others to use. While writing large or
complex extension packages would require some programming skill and experience, programming in R
on a smaller and simpler scale is in fact relatively easy, the basics of which can be mastered quickly.
Given that R is a programming language, there is then effectively no real limit on its capabilities.

• The R programming language itself can be extended by interfacing with other programming languages
like C, C++, Fortran, Python, and others. In particular, the popular Rcpp packages greatly simplifies
integrating R with C++, thus allowing fast and efficient C++ code to used seamlessly within R.
Likewise, R can be easily interfaced with high performance computing or big data tools like Hadoop,
Spark, SQL, parallel computing libraries, cluster computing, and so on.

Taken together, these points entail that R is an extremely powerful and extensible environment for doing any
kind of statistical computing or data analysis.

Open source software
R is free and open source software, distributed according to the GNU public license. Likewise, virtually all of
the over 17000 contributed R packages are likewise free and open source software, with over 99% of them are
distributed according to one of the major open source licences, such as GNU, MIT, BSD, Apache, Creative
Commons, Artistic. It is important emphasize the in principle and practical distinctions between free and
open source software, on the one hand, and freeware, on the other. Freeware is proprietary software that is
distributed, usually only in binary form and with certain restrictions and conditions, at no monetary cost
to the user. While it can be used in a limited sense at no cost, it can not be extended or developed, its
source code can not be viewed, and its non-monetary cost can be revoked at any time. Free and open source
software, on the other hand, is licensed so that anyone can use it and develop it in any manner, including
and especially by viewing and extending its source code. Free and open source software is defined by four
essential freedoms (“What Is Free Software?” 2020):

2

• The freedom to run the program in any manner and for any purpose.
• The freedom to study and modify the source code.
• The freedom to distribute copies of the original code.
• The freedom to distribute modified versions of the code.

In practical terms, the most obvious consequence of R’s free and open source nature is that is freely available
for everyone to use, on more or less any device they choose. It is mostly widely used on Windows, Macs, and
Linux, but because it is available in open source it can in principle be complied for any platform, and can be
used on, for example, Android, iOS, Chrome OS, and many others. This means that anyone can use R at any
time anywhere and always at no cost. And because of its licence, this will always be the case.

Open source software always has the potential to “go viral” and develop a large self-sustaining community of
user/developers. This is precisely what has happened in the case of R. Users are drawn in initially because
it is available at no cost, can be used on any platform, and has a large number of built-in or add-on tools.
Because R is an open platform, developers such as academic statisticians or data scientists who want to reach
a large audience write further add-on packages and make these publicly available. This draws in more users.
The users themselves may write blogs, books, articles, or teach with R, thus attracting still more users, and
so on.

Popularity
The Journal of Statistical Software1 is the most widely used academic journal describing advances and
developments in software for statistics. While it accepts articles describing methods implemented in a wide
variety of languages, it is overwhelmingly dominated by programs written in R. This fact illustrates that when
it comes to the computational implementation of modern statistical methods, R is the de facto standard.

In an extensive analysis of general data science software (Muenchen 2019), R is ranked as one of the top five
most popular data science programs in jobs for data scientists, and in multiple surveys of data scientists, it is
often ranked as the first or second mostly widely used data science tool, and the most widely “followed” topics
on Quora and LinkedIn. Likewise, despite being a domain specific language, according to many rankings of
widely used programming and scripting languages worldwide, R is currently highly ranked. R is currently
very highly ranked according to many rankings of widely used programming languages of any kind. For
example, the latest RedMonk ratings (“The Redmonk Programming Language Rankings: June 2020” 2020)
place R at rank 13. The latest TIOBE ratings (“TIOBE Index” 2020) place are at rank 8. The latest PYPL
ratings (“PYPL Popularity of Programming Language” 2020) place R at rank 7.

Installing R and RStudio
Installing R is usually a painless process, but it also usually involves two, or maybe three, separate steps.
First, R itself must be installed. This will install the R interpreter and also what we’ll call R’s standard
library. The interpreter is the means by which all our R commands are converted into machine code that is
then executed on our machine. The standard library is the set of built-in packages mentioned above that
provide all the basic or most widely used tools for doing statistics, analysis, and visualization. With that, we
will have a fully functioning R environment. However, by stopping here, the interface through which we’ll
interact with R will be very minimal and lacking many features that would make our use of R more pleasant
and efficient. As such, the second installation step will be to install the RStudio Desktop environment. This
is a very popular interface to R that will greatly transform the ease and efficiency with which we work with R.
Throughout the remainder of this book, we’ll assume that we’re always working through the RStudio Desktop.
The third installation step is the installation of extra R packages. As mentioned above, R has over 13,000
add-on packages. Users can install them on-demand from within R in a manner just like installing apps on
a mobile device. When first installing R, it’s often a good idea to also install a minimal set of must-have
packages. After that, additional R packages can be installed as and when they are needed.

1https://www.jstatsoft.org

3

https://www.jstatsoft.org

We’ll now describe how to install R and the RStudio Desktop, and further below, after we describe more
about how to use R and RStudio, we will have a separate section on installing R packages.

Installing R
To install the latest version of R on Windows, go here

https://cran.r-project.org/bin/windows/base/

For the installer for the latest version of R for Macs, go here

https://cran.r-project.org/bin/macosx/

For Windows, the installer is an .exe file. For Macs, it is .pkg file. In either case, always go for the installer
of the latest R version (which, as of August 2020, is 4.0.2). we install R with these installers just as we would
install any other program on Windows or Macs.

If we’re using Linux, we can follow steps similar to the above to get a installer. However, it is likely that
everything will be simpler if we just use our Linux distribution’s own package manager and install R with
that. For example, with Debian and Ubuntu based distributions, we can use the apt-get package manager,
or use the pacman installer on Arch Linux, and so on.

Installing RStudio Desktop
The RStudio Desktop is one of the software products created by the company RStudio. Although RStudio
is a private commercial company, it releases its software under a free and open source licence (namely the
GNU Affero General Public License). It also sells technical support for these products, but this is aimed at
companies and organizations rather than individuals. Simply put, we can use RStudio software just as we
use all R software: at no cost, and according to a free and open source licence. Any prices that are listed for
RStudio software are for commercial support.

The webpage

https://www.rstudio.com/products/rstudio/download/

provides us with the necessary links to the Windows, Mac, and Linux installers. Choose the RStudio Desktop:
Free option, which we will see is listed as under an open source license. The latest version as of August 2020
is 1.3.1056. we use the installers here just as we would use any Windows and Mac installers. For Linux users,
there are versions for popular Linux distributions like Ubuntu and Fedora and others.

Guided Tour of RStudio Desktop
Having installed R and the RStudio Desktop, we can now effectively forget about R. It is fully installed, and
it will be doing all the computing whenever we use RStudio Desktop, but its runs in the background and we
don’t have to use it directly. For all practical purposes, it will seem like we are just using a single standalone
desktop application.

A note on terminology: Strictly speaking RStudio is the company that created and maintains the RStudio
Desktop software, amongst other pieces of software. In practice, almost everyone, including those who work
for RStudio itself, refer to RStudio Desktop simply as RStudio, and we’ll do so here as well. Another product
made by RStudio, the RStudio Server, which we’ll describe below, is also sometimes called RStudio, but we’ll
usually explicitly refer to that the RStudio server.

we open RStudio just as we would any other desktop application (e.g. double clicking an icon, typing its
name in a launcher, etc), and when we do so, we will be greeted by something that should look exactly like
what is shown in Figure 1.

we will see three main windows, which we will describe in more detail below. For now, we see that to the
left, occupying about half the screen by default, is a window with the Console pane. To the right, there are

4

Figure 1: The typical layout of the RStudio Desktop when it is opened first.

two other windows arranged vertically. Usually, in fact almost always, we also have two windows on the left.
On top of the window with the console pane, we usually have a script editor. If it is not present, it can be
brought up by the key commands Ctrl+Shift+N (Command+Shift+N on Macs), or by going to the File
menu at the top of the screen and choosing New File > R Script. Doing so will create a blank and untitled R
script in the script editor window, which will now occupy the upper left quadrant of the screen. our screen
should now look like Figure 2.

Figure 2: RStudio Desktop with R script in upper left quadrant.

5

We’ll now look in more detail at each of these four windows.

Console window The console window usually occupies about half of the left hand side of the screen. Like
all windows, it can be resized with the mouse, or with the window resize buttons to the upper right
of each window. In the console window, by default, there are tabs for three panes: the Console, the
Terminal, and Jobs. The tab for the console is usually the active one. This is where we type R
commands, followed by Enter, and get all our results and output. It is the single most important part
of the RStudio desktop. We will use it extensively, beginning with our introduction to R commands in
the following next section. The next tab is the Terminal, and this the command line interface to our
computer’s operating system. So, on Windows, this is usually the DOS command line. On Macs and
Linux, it is Unix shell, such as the bash shell. Unlike the console, the terminal is not as widely used.
It may not in fact be used ever, and is only necessary when we need a command line interface to our
operating. The Jobs pane is also not as widely used. It is for running scripts asynchronously.

Script editor window The script editor is where we write scripts of R commands. We use scripts whenever
we want to save our R commands for later re-use, or whenever the R commands are becoming relatively
long and complex. We write here just as we would write in any text file editor (e.g. like notepad), and
we can save these files on our computer’s file system as normal. As we’ll see below, we can execute or
run the commands we write in any script either line by line or region by region or by executing the
whole script at once. If we run individual lines or regions, the R code effectively gets copied to the
console followed by Enter just as if we copied and pasted from the editor to the console. We can run
the whole script at once, as we’ll see below, by using the source command, for which there is a button
on the upper right of the editor window.

Environment, History etc window In the upper right pane, there are tabs for the Environment, History,
and Connections panes. Sometimes there are other tabs like for Build and Git. Of these, Environment
and History are the more commonly used. As we’ll see as soon as we start using R commands and
creating variables, the details of the variables and data structures that are in our current R session are
listed in the Environment. We will have the option of clearing or deleting any or all of these whenever
we wish. Likewise, we may save all of these objects to file, and reload them later. The Environment
window also provides us with a convenient means of importing data files. The History window provides
a list of all the R commands that we have typed. This is a particularly useful feature as we will see.
It allows us to review everything we have typed in our R session, and allows us to extract out and
re-run any commands we want. We may also save our command history to file at any time. The other
tabs available in this window are not usually used as often. Connections is used for connecting with
databases or clusters, and we will see it again later in the book. Build, which may not be listed at all,
is for building packages or compiling code. Git, which likewise may not exist, is for version control of
our code using Git. We will talk about using Git for version control in Chapter 6.

Files, Plots, Packages, Help, Viewer window The lower right window provides tabs for browsing files,
viewing plots, managing R packages, reading help files, and for viewing html documents. The Files
window is a regular file browser, where we can view, create, delete, etc., files and directories. The Plots
window is where all figures created during our R session are shown. If we produce many figures, they
are placed in a stack and we can move forward and backward between them. The Packages window,
which we will return to in more detail in the next section, lists all our installed R packages. From
here, we can also activate packages for our current R session, as well as install new packages. The Help
window displays help pages for any R command or package. We can browse through these pages, but a
particularly useful feature is how we can jump straight through a needed help page for a command or
package directly from the R command line or script editor. We will return to this feature in one of the
next sections. The Viewer window is where we can view html pages that are created in RStudio. These
could include Shiny web apps or the html pages produced by RMarkdown documents. These are topics
to which we will return in later chapters.

Rstudio menus
At the top of the RStudio Desktop there are the following set of menus.

6

File The File menu is primarily for the opening, closing and saving of files. Often, these files will be R scripts
that open in the script editor. But they could also be R data file, RMarkdown documents, Shiny apps,
etc. Here, we can also open and close RStudio projects, which is a very useful organizing feature to
which we will return below.

Edit The Edit menu primarily provides tools for standard file editing operations such as copy, cut, paste,
and search and replace, undo and redo, etc. It also provides code folding features, which is very useful
for reducing clutter when editing relatively large R scripts.

Code The Code menu provides many useful tools for making editing and running code considerably easier
and more efficient. We will explore these features in more depth in subsequent sections, but they include
the adding and removing code comments, reformatting code, jumping to functions within and between
scripts, creating code regions that can then be run independently, and so on.

View The View menu primarily provides options to move around RStudio quickly. These options are all
bound to key combinations, as are many other RStudio features, and learning these key combinations is
certainly worthwhile because of the eventual speed and efficiency gains that they provide.

Plots The Plots menu primarily provides features that are also available in the Plots window itself.

Session The Session menu allows us to start new separate RStudio sessions. These then run independently
of one another. Also in the Session menu, we can restart the R session in the background, which is a
useful session. Remember that RStudio itself is just a front to an R session that runs in the background.
Sometimes it is a good idea to restart the R session so as to start in a clean and fresh state. This can
be done through the Session menu Restart R option, which is also bound to the keys Ctrl+Shift+F10.
Also in Session are options to set R’s working directory. This concept of a working directory is a simple
but important one, and we will cover it below.

Build The Build menu provides features for running scripts for software builds. This is particularly used for
creating R packages.

Debug The Debug menu provides tools for debugging our R code. Debugging usually only becomes a
necessity when R programming per se, and not something that is usually required when writing
individual commands or scripts of commands.

Profile The Profile menu provides tools for profiling the running and efficiency of our R code. Code efficiency
is certainly not something that those new to R need to worry about, but when writing relatively complex
code, profiling can identify bottlenecks.

Tools The Tools menu provides miscellaneous tools such as for working with version control using Git,
accessing the computer’s operating system’s command line interface, installing and updating packages
(as could also be done in the Package window), viewing and modifying keyboard shortcuts. Here, we
can also access the Global Options and Project Options. Global Options is where all the general R
and RStudio settings are set. One immediately useful setting here is the Appearance setting, which
can allow us to change the font, font size, and colour theme of RStudio to suit our preference. Project
Options are for the RStudio project specific settings. We will return to these below.

Help The Help menu provides much the same information as can be found in the Help window. It also
provides some additional links to online resources, such as RStudio’s cheatsheets2, which are excellent
concise guides to many different R and RStudio topics. Also available in the Help menu are tools
to access RStudio internal diagnostics. This is only that is needed if and when RStudio seems to be
malfunctioning.

First steps in R
R is very a powerful tool. While it is unquestionably a wonderful thing that everyone can have access to this
powerful tool at no monetary cost, now or ever, R’s power can also be intimidating and off-putting at the

2https://www.rstudio.com/resources/cheatsheets/

7

https://www.rstudio.com/resources/cheatsheets/

beginning. People who wish to learn R may simply not know where to begin. Worse still, some people dive
in too deep at the beginning — tackling some complex analysis before they have a good handle on the basics
— and find things difficult and frustrating, and may then even abandon trying to learn R at all.

To learn R, it is best to learn the fundamentals first. In what follows, we have provided sequence of steps that
cover many of these. With each step, we’ll introduce some fundamental concepts or tools, and these concepts
and tools can build on one another and be combined to lead to yet more concepts and tools. What we will
not cover in these steps are the major topics like data wrangling, data visualization, statistical analyses, etc.
These will be covered in depth in subsequent chapters, and build upon a knowledge of the fundamentals that
we cover here.

Step 0: Using the R console
R is a command based system. We type commands, R translates them into machine instructions, which our
computer then executes, and then we often, but not necessarily, get back some output. The commands can
be typed into the R console, or else they can be put into a script and run as a batch. When learning R, it is
usually best to start with typing commands in the R console.

When we open RStudio initially, our console will usually look something like this:

R version 4.0.2 (2020-06-22) -- "Taking Off Again"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

Notice that at the bottom, there is a single line beginning with >. This is the R console’s command prompt,
and it is where we type our commands. We then press Enter, and our command is executed. The output of
the command, if any, is displayed on the next line or lines, and then a new > prompt appears.

Step 1: Using R as a calculator
A useful way to think about R, and not an inaccurate one either, is that it is simply a calculator. It is useful
therefore to learn R by first treating it just like an ordinary handheld calculator, and then learning the ways
it extends or goes beyond the capabilities of a calculator. Just as we would with a calculator, we can start
using R by doing arithmetic, i.e. adding, subtracting, multiplying, dividing, and so on.

So, let’s start by adding 2 and 2. We do this by typing 2 + 2 at the command prompt, and then pressing
Enter. What we see should look exactly3 as follows.

> 2 + 2
#> [1] 4

3In this document, each line of the console’s output begins with #>, which will not appear in the actual console. We use the
#> just to make it easier to read and to distinguish between the commands that we input into the console and the output that is
then displayed.

8

Notice that the result of the calculation is displayed on the line following the command. That line begins
with a [1], and we will return to what this means below but for now it can be ignored.

Now, let’s do some more. Each time, we’ll type the command, press Enter, get the result, and then a new >
prompt occurs, and we type the next command and so on. So calculating the sum of 3 and 3, 4 and 5, 10
and 17 and 5 will lead to the following:

> 3 + 3
#> [1] 6
> 10 + 17 + 5
#> [1] 32

Using history: Before we proceed, take a look at our History window. It should look like this:

2 + 2
3 + 3
10 + 17 + 5

In other words, it is a list of everything we’ve just typed. If we click on any line here, we will select it. If we
then click To Console, this line will be copied to the console, and we can press Enter to re-execute. More
usefully, we can move through our history with the Up and Down arrow keys on our keyboard. Repeatedly
pressing the Up arrow key will bring up the list of each command we just typed, and repeatedly pressing
the Down arrow key will bring us back down. At any point as we go through the list, we can press Enter to
re-run that command, which then adds that command on to the end of the History.

Let’s look at some more arithmetic. For subtraction, we use the - symbol.

> 5 - 3
#> [1] 2
> 8 - 1
#> [1] 7

Multiplication uses the asterisk symbol *.

> 5 * 5
#> [1] 25
> 2 * 4
#> [1] 8

Division uses the / symbol.

> 1 / 2
#> [1] 0.5
> 2 / 7
#> [1] 0.2857143

Exponents, i.e. raising a number to the power of another number, is accomplished with the caret symbol ˆ.

> 2 ^ 8
#> [1] 256
> 10 ^ 3
#> [1] 1000

Exponents also work by **, but this is less common.

> 2 ** 8
#> [1] 256
> 10 ** 3
#> [1] 1000

Just like on a calculator, we can combine the +, -, *, /, ˆ operators in any commands.

9

> 2 + 3 - 6 / 2
#> [1] 2
> 10 * 2 - 3 / 5 ^ 2
#> [1] 19.88

Note that precedence order of operations will be ˆ followed by * or / followed by + or -, and just like on a
calculator, we can use round brackets to control the order of operations.

> 2 / (3 * 2)
#> [1] 0.3333333
> (2 / 3) * 2
#> [1] 1.333333

In the above, we were always dealing with positive values. However, we can always precede any number with
a - to get its negative value.

> -2 * 3
#> [1] -6
> 10 ^ -3
#> [1] 0.001

Notice that throughout all the above above commands, we put a space between around the +, -, *, /, ˆ
operators. This is a matter of recommended style to improve readability, not a requirement. In other words,
the following all work in exactly the same way.

> 2+3
#> [1] 5
> 2+ 3
#> [1] 5
> 2 + 3
#> [1] 5

It is just recommended to use the 2 + 3 version. On the other hand, while it is also possible to have spaces
after the - sign that we use to negate a value, the recommended style is to not do so, and so we use 3 / -2
and not 3 / - 3, though both will do the same thing.

Step 2: Variables and assignment
A major step forward in using R, and a major step beyond the capabilities of a handheld calculator, is the
use of variables and the assignment of values to variables. In effect, this simply allows us to store the values
of calculations for later use, but that in fact is a very powerful thing.

Consider what happens when we type the following at the command prompt and then press Enter.

> (12 / 3.5) ^ 2 + (1 / 2.5) ^ 3 + (1 + 2 + 3) ^ 0.33
#> [1] 13.6254

All the constituent numbers are stored in our computer’s memory, calculations are done on them, and then
the result is stored in memory. This is then displayed as the output on our screen, and because nothing
further needs to be done with it, it is removed from memory. We can, however, keep this value stored in
memory by assigning it to a variable. We do this with the assignment operator <-, which is a < symbol
followed directly by a - symbol. The <- can be typed by key combination Alt+- (i.e Alt key and minus key
together) or Option+- on the Mac.

So if we want to assign the value of the above calculation to a variable named x, we would do

> x <- (12 / 3.5) ^ 2 + (1 / 2.5) ^ 3 + (1 + 2 + 3) ^ 0.33

Notice that on pressing Enter here, there is no output on screen. The calculation is done as normal but
rather than outputting it to the screen, the value is assigned to the variable named x. If we now type the
name x at the prompt, its value will be displayed.

10

> x
#> [1] 13.6254

We can then do calculations with this variable just like we would with any other number

> x ^ 2
#> [1] 185.6516
> x * 3.6
#> [1] 49.05145

And we can assign any of these values to new variables.

> y <- x ^ 2
> y <- x * 3.6

In general, the assignment rule is

name <- expression

The expression is any R code that returns some value. This could be the result of a calculation, as in the
above examples, but it could also be the “output”, or result, of some complex statistical analysis, which is
something we will see repeatedly in later sections and chapters. In the simplest case, it could also be just a
single numeric or other value, e.g.,

> x <- 42

The name has to follow certain naming conventions. In all the above examples, we used a single lowercase
letter, but in general it can consist of multiple characters. Specifically, it can consist of letters, which can be
either lowercase or uppercase, numbers, dots, and underscores. It must, however, begin with a letter or a dot
that is not followed by a number. So all of the following are acceptable.

x123
.x
x_y_z
xXx_123

But all of the following are not acceptable.

_x
.2x
x-y-z

Although many names like x123 etc. are valid names, the recommendation is to use names that are meaningful,
relatively short, without dots (using the underscore _ instead for punctuation), and primarily consisting of
lowercase characters. Examples like the following are recommended.

> age <- 29
> income <- 38575.65
> is_married <- TRUE
> years_married <- 7

Step 3: Vectors
Up to now, all the values we’ve been dealing with have been single values. In general, we can have variables
in R that refer to collections of values. These are known as data structures. There are many different types of
data structures in R, but the two that we encounter most often are vectors and data frames. Data frames
are probably the single most important data structure in R and are the default form for representing data
sets for statistical analyses. But data frames are themselves collections of vectors, and so vectors are a very
important fundamental data structure in R. In fact, as we will see, single values like all those used above, are
actually vectors when exactly one element.

11

Vectors are one dimensional sequences of values. While they will often be created for us by the R functions
that we use, such as by some data analysis functions, we can also create vectors ourselves using the the c()
function. For example, if we want to create a vector of the first 10 primes numbers, we could do the following.

> primes <- c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

To use the c() function, where c stands for combine, we simply put within it a set of values with commas
between them.

Vector operations

We can now perform operations, like those we saw above, on the primes vector just as we would to a single
valued variable. For example, we can do arithmetic operations.

> primes + 1
#> [1] 3 4 6 8 12 14 18 20 24 30
> primes / 2
#> [1] 1.0 1.5 2.5 3.5 5.5 6.5 8.5 9.5 11.5 14.5
> primes ^ 2
#> [1] 4 9 25 49 121 169 289 361 529 841

In these cases, the operations are applied to each element of vector.

Indexing

For any vector, we can refer to individual elements using indexing operations. For example, to get the first or
fifth elements of primes, we would use square brackets as following.

> primes[1]
#> [1] 2
> primes[5]
#> [1] 11

If we want to index sets of elements, rather than just individual elements, we can use vectors (made with the
c() function) inside the indexing square brackets. For example, if we want to extract the 7th, 5th, and 3rd
elements, in that order, we can do the following.

> primes[c(7, 5, 3)]
#> [1] 17 11 5

If we want to refer to a consecutive set of elements, such as the second to the fifth elements, we can do the
following.

> primes[2:5]
#> [1] 3 5 7 11

In R, the expression n:m, where n and m are integers, gives us the vector of integers from n to m. So, for
example, 2:5 means the same thing as c(2, 3, 4, 5).

If we use a negative valued index, we can refer to or all elements except one. For example, all elements of
primes except the first element, or except the second element, can be obtained as follows.

> primes[-1]
#> [1] 3 5 7 11 13 17 19 23 29
> primes[-2]
#> [1] 2 5 7 11 13 17 19 23 29

If we precede a vector of indices by a minus, we’ll return all elements except those in the index vector. For
example, we can get all elements except the third, fifth, or seventh elements as follows:

> primes[-c(7, 5, 3)]
#> [1] 2 3 7 13 19 23 29

12

Single valued vectors

R, unlike some other programming languages, does not represent single values as elementary data types.
Single values are in fact just vectors with only one element, and so can be indexed, and so on, just like any
other vector.

> x <- 42
> x[1]
#> [1] 42

Character vectors

Our primes vector is a sequences of decimal numbers. We can verify this by applying the class function to
the vector and seeing that it is a numeric vector.

> class(primes)
#> [1] "numeric"

We can, however, have many other types of vectors. For example, we can have character strings, i.e. string of
characters that are surrounded by quotation marks. These are, in fact, very widely used in R. For example,
here’s vector of the names of the six nations.

> nation <- c('ireland', 'england', 'scotland', 'wales', 'france', 'italy')

This vector is of type character, which we can verify as follows.

> class(nation)
#> [1] "character"

Note that we can use single or double quotation marks for each string, as in the following example.

> nation <- c("ireland", 'england', "scotland", 'wales', 'france', 'italy')

Just like numeric vectors, we can index character vectors.

> nation[1]
#> [1] "ireland"
> nation[-2]
#> [1] "ireland" "scotland" "wales" "france" "italy"
> nation[4:6]
#> [1] "wales" "france" "italy"

We can not, however, perform arithmetic functions on character vectors. We will obtain an error if we try.

> # does not work
> nation + 2
#> Error in nation + 2: non-numeric argument to binary operator
> nation * 2
#> Error in nation * 2: non-numeric argument to binary operator

Logical vectors

Another widely used type of vector is a logical or Boolean vector. A Boolean variable is a binary variable
that takes on values of true or false. In R, these values are represented using “TRUE” or “T” for true, and
“FALSE” or “F” for false. For example, a vector of values representing whether each of a set of five people is
male or could be as follows.

> is_male <- c(TRUE, FALSE, TRUE, TRUE, FALSE)

This could also be created more succintly as follows.

> is_male <- c(T, F, T, T, F)

13

Using class, we can verify that this vector is a logical vector.

> class(is_male)
#> [1] "logical"

We can index logical vectors just like numeric or character vectors.

> is_male[2]
#> [1] FALSE
> is_male[c(1, 2)]
#> [1] TRUE FALSE

Arithmetic operations on logical vectors can be applied to logical vectors, but only by first converting “TRUE”
and “FALSE” to the number 1 and 0, respectively.

> is_male * 2
#> [1] 2 0 2 2 0
> is_male - 2
#> [1] -1 -2 -1 -1 -2

The vector returned by operations like this is a numeric vector.

> result <- is_male * 2
> class(result)
#> [1] "numeric"

We can also apply Boolean or logical operations to logical vectors. These logical operations are and, or, and
not. The and operator tests if two logical values are both true. In R, it is represented by &.

> TRUE & FALSE
#> [1] FALSE
> TRUE & TRUE
#> [1] TRUE

In these example, we have a single Boolean variables on either side of the &, but given that a single value is a
vector of one element, we could also apply the & to vectors of multiple elements.

> c(T, F, T) & c(T, T, F)
#> [1] TRUE FALSE FALSE

In this case, the & operation is individually applied to the first, second, and third elements of both vectors.
The or operator tests if one or the other is true, and is represented by the | character.

> TRUE | FALSE
#> [1] TRUE
> TRUE | TRUE
#> [1] TRUE

We can negate a logical value by using the ! operator.

> !TRUE
#> [1] FALSE
> !FALSE
#> [1] TRUE

Just as we can combine arithmetic operations, so too can we combine logical operations, using brackets to
control the order of operations if necessary.

> (TRUE | !TRUE) & FALSE
#> [1] FALSE
> (TRUE | !TRUE) & !FALSE
#> [1] TRUE

14

Equality/inequality operations

Equality and inequality operations can be applied to different types of vectors, and also return logical vectors.
For example, we can test if each value of a vector of numbers, such as primes, is equal to a specific value as
follows.

> primes == 7
#> [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

Again, given that a single value is a vector of one element, we can also apply this operator to individual
values.

> 12 == (6 * 2)
#> [1] TRUE

And we can test if values are not equal with !=.

> 12 != (6 * 2)
#> [1] FALSE
> primes != 3
#> [1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We can test if numbers are less than, or greater than, another number with the < and > operators, respectively.

> primes < 5
#> [1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> primes > 8
#> [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

We can test if numbers are less than or equal to, or greater than or equal to, another number with the <=
and >= operators, respectively.

> primes <= 7
#> [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
> primes >= 3
#> [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We can also apply equality or inequality operations to character vectors.

> nation == 'england'
#> [1] FALSE TRUE FALSE FALSE FALSE FALSE
> nation != 'england'
#> [1] TRUE FALSE TRUE TRUE TRUE TRUE

The meaning of some inequality operations, such as the following, may be initially unclear.

> nation >= 'italy'
#> [1] FALSE FALSE TRUE TRUE FALSE TRUE

In this case, greater than or less than is defined by alphabetical order, and so nation >= 'italy' is evaluating
whether each listed nation is alphabetically after, or the same as, the string italy.

Coercing vectors

An important property of all vectors is that they are homogeneous, in that all their elements must be of
the same data type. For example, we can’t have a vector with some numbers, some logical values, and some
characters. If we try to make a heterogeneous vector like this, some our elements will be coerced into other
types. If we, for example, try to combine some logical values with some numbers, the logical values will be
coerced into numbers (TRUE will be converted to 1, FALSE will be converted to 0).

> c(TRUE, FALSE, 3, 2, -1, TRUE)
#> [1] 1 0 3 2 -1 1

15

If we try to combine numbers of logical values with character strings, they will all be coerced into strings, as
in the following example.

> c(2.75, 11.3, TRUE, FALSE, 'dog', 'cat')
#> [1] "2.75" "11.3" "TRUE" "FALSE" "dog" "cat"

Combining vectors

Just as we combined numbers or other single values into vectors using the combine, i.e., c() function, so too
can be combine vectors with c(). For example, to combine the primes vector, with the vectors that are the
squares and cubes of primes, we would do the following:

> c(primes, primes^2, primes^3)
#> [1] 2 3 5 7 11 13 17 19 23 29 4 9
#> [13] 25 49 121 169 289 361 529 841 8 27 125 343
#> [25] 1331 2197 4913 6859 12167 24389

In this case we have produced a vector of 30 elements. These don’t all fit on one lines and so are wrapped
over three lines. The first row displays elements 1 to 11. The second row begins with the twelfth element,
and the third row begins with the 23rd element. Now, we can see the meaning of the [1] on the output that
we encountered in all of the above examples. The [1] is merely the index of the first element of the vector
shown on the corresponding line.

Named vectors

The elements of a vector can be named. For example, we could provide names to our elements when we
create the vector as in the following example.

> ages <- c(bob = 27, bill = 19, charles = 24)
> ages
#> bob bill charles
#> 27 19 24

We can access the vector’s values now by their names as well as by an index as before.

> ages['bob']
#> bob
#> 27
> ages['bill']
#> bill
#> 19

If we have an already existing vector, we can add names using the names function as in the following example.

> ages <- c(27, 19, 24)
> names(ages) <- c('bob', 'bill', 'charles')
> ages
#> bob bill charles
#> 27 19 24

Missing values

In any vector, regardless of its type, there can be missing values. In R, missing values are denoted by NA,
which can be typed inserted explicitly into any vector as in the following examples.

> x <- c(1, 2, NA, 4, 5)
> x
#> [1] 1 2 NA 4 5
> y <- c('be', NA, 'afeard')

16

> y
#> [1] "be" NA "afeard"

The NA here is not a character a string. It is a special symbol with a special meaning in R. In other words,
there is an important difference between the following two vectors.

> c(1, 2, NA, 4, 5) # this is a numeric vector, but with a missing value
#> [1] 1 2 NA 4 5
> c(1, 2, 'NA', 4, 5) # the "NA" coerces this to be a character vector
#> [1] "1" "2" "NA" "4" "5"

Step 4: Data frames
The data frame is probably the most important data structure in R. As mentioned, data frames are how we
almost always represent real world data sets in R, and most statistical analysis commands, especially modern
ones, assume data is provided in the form of data frames. We will provide a much more comprehensive
coverage to data frames in subsequent chapters, but for now, we’ll describe some of their essential features.

Data frames are rectangular data structures: they have certain number of columns, and each column has the
same number of rows. Each column is in fact a vector, and so data frames are essentially collections of equal
length vectors.

Usually, data frames are created when read in the contents of a data file, such as a .csv or .xlsx file.
However, for the purposes of introduction, we can produce them on the command line with the data.frame()
function as in the following example.

> data_df <- data.frame(name = c('billy', 'joe', 'bob'), age = c(21, 29, 23))
> data_df
#> name age
#> 1 billy 21
#> 2 joe 29
#> 3 bob 23

As we can see, this created a data frame with 3 rows and 2 columns. The columns are variables, and the
rows are the observations of these variables.

We can refer to the elements of a data frame in different ways. The simplest is to use double indices, one for
the rows, one for the columns. For example, to refer to the element in the third row of the second column

> data_df[3, 2]
#> [1] 23

We can refer to the first and third row of the second column by using a vector of indices for the rows

> data_df[c(1, 3), 2]
#> [1] 21 23

We can refer to all the elements of the third row, by leaving the second index blank.

> data_df[3,]
#> name age
#> 3 bob 23

We have more options available if we want to refer to one or more columns. We could, for example, use the
double indices, leaving the first index blank to refer to all rows. For example to refer to the second column,
we would do the following.

> data_df[,2]
#> [1] 21 29 23

One the other hand, we could also refer to the column by name. To do so, we could use the following $
notation.

17

> data_df$age
#> [1] 21 29 23

Here, age can be seen as a property of data_df, and so data_df$age accesses this property. An alternative
syntax that accomplishes the same thing is to use double square brackets as follows.

> data_df[['age']]
#> [1] 21 29 23

If, one the other hand, we were to use a single square brackets, we would obtain the following.

> data_df['age']
#> age
#> 1 21
#> 2 29
#> 3 23

This is a subset of data_df that is itself a data frame.

Step 5: Other data structures
So far we have met vectors and data frames. These are probably the most commonly encountered data
structures in R but there are others. Here is a brief overview.

Lists

Lists in R allow for the storage of multiple heterogeneous data structures. As an example, the list in the
following example contains three vectors of different types, and with different number of elements.

> example_list <- list(A = TRUE, B = c(1, 2, 3), C = c('cat', 'dog'))
> example_list
#> $A
#> [1] TRUE
#>
#> $B
#> [1] 1 2 3
#>
#> $C
#> [1] "cat" "dog"

We can refer to the elements of the list just as we would refer to the variables of a data frame, which is not
surprising given that in fact data frames are ultimately lists of vectors of the same length.

> example_list[['B']]
#> [1] 1 2 3
> example_list$B
#> [1] 1 2 3
> example_list[[1]]
#> [1] TRUE

Matrices

Matrices are equivalent to 2-dimensional vectors. They contain homogeneous data types and are arranged in
a rectangular n × m format, where each of the n rows has exactly m columns, and each of the m columns
have exactly n rows. In the following example, we put the first 10 primes in a matrix of 2 rows and 5 columns.

> matrix(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29), nrow=2, ncol=5)
#> [,1] [,2] [,3] [,4] [,5]

18

#> [1,] 2 5 11 17 23
#> [2,] 3 7 13 19 29

Notice how the elements were arranged by columns first (i.e. the first primes element is in the first row and
first column, the second element is in the second row of the first column, and so on). Alternatively, we can
arrange the elements by rows as follows.

> matrix(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29), byrow = T, nrow=2, ncol=5)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 2 3 5 7 11
#> [2,] 13 17 19 23 29

We may also create matrices by binding vectors by rows or columns. For example, we may stack vectors as
rows on top of one another by an rbind operation as follows.

> rbind(c(1, 2), c(3, 4))
#> [,1] [,2]
#> [1,] 1 2
#> [2,] 3 4

Alternatively, we may stack them as columns side by side.

> cbind(c(1, 2), c(3, 4))
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4

We can index the elements, rows, and columns in a matrix similarly to how we did so in the case of data
frames.

> primes_m <- matrix(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29), byrow = T, nrow=2, ncol=5)
> primes_m
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 2 3 5 7 11
#> [2,] 13 17 19 23 29

Here, we index a single element, all elements of a row, or all elements of column, respectively.

> primes_m[1, 3] # row 1, column 3
#> [1] 5
> primes_m[2,] # row 2, all cols
#> [1] 13 17 19 23 29
> primes_m[, 3] # column 3, all rows
#> [1] 5 19

Matrix algebra operations, such as matrix inverse and inner or outer products, may be applied to R matrices.
We will not discuss this operations further here but will return to them as we encounter them in later chapters.

Arrays: Arrays are n-dimensional generalizations of matrices, which are strictly 2d data structures. We can
create an array in a similar manner to how we created matrices, as in the following examples.

> example_array <- array(c(1, 2, 3, 4, 5, 6, 7, 8), dim=c(2,2,2))
> example_array
#> , , 1
#>
#> [,1] [,2]
#> [1,] 1 3
#> [2,] 2 4
#>
#> , , 2

19

#>
#> [,1] [,2]
#> [1,] 5 7
#> [2,] 6 8

We can index arrays just as we did with matrices, but now with three indices, as in the following examples.

> example_array[1,2,]
#> [1] 3 7
> example_array[,1,]
#> [,1] [,2]
#> [1,] 1 5
#> [2,] 2 6

Step 6: Functions
While data structures hold data in R, functions are used to do things to or with the data. In almost all
functions, we put data structures in, calculations or done to or using this data, and new data structures,
perhaps just a single value, are then returned. So far, we have seen two functions: c(), which combines
vectors, and data.frame(), which creates data frames. Altogether, across all R packages and R’s standard
library, there are at least tens of thousands of functions available in R, and probably many more. That, of
course, is an overwhelmingly large list, but at the start all we need to know is a relatively small set, and we
then learn more gradually as we continue to use R.

To explore some functions, we’ll use our primes vector above. We can count the number of elements in the
vector as follows.

> length(primes)
#> [1] 10

We can get the sum, mean, median, standard deviation, variance as follows.

> sum(primes)
#> [1] 129
> mean(primes)
#> [1] 12.9
> median(primes)
#> [1] 12
> sd(primes)
#> [1] 9.024042
> var(primes)
#> [1] 81.43333

Nested functions

We can nest functions as in the following example.

> round(sqrt(mean(primes)))
#> [1] 4

Here, we first calculate the mean of primes, then get its square root using sqrt, and then round the result
using round.

Optional arguments

In all above the above examples, the functions take a single vector of any length as their input argument,
and return a single value (vector of length one) as its output. In some cases, function make take additional
arguments, which if left unspecified are given default values. For example, mean() takes an additional trim
argument, which trims out a certain proportion of the extreme values of the vector, and then calculates the

20

mean. By default, the value of trim is 0, meaning that no trimming is done by default. If, on the other hand,
we want to trim out 10% of the highest and lowest values, we would set trim to 0.1 as follows.

> mean(primes, trim=0.1)
#> [1] 12.25

Function help pages

Knowing that mean() takes an additional optional argument trim, and what trim does and what is its
default values, can be discovered from the help page for mean(). In fact, all functions will have a help page,
which will usually tell us exactly what should go in to the function and what comes out, what the function
does, and it usually also provides examples of its use. We can always access the help page of a function by
preceding the function’s name with ? and pressing enter.

> ?mean

This is equivalent to typing help() with function’s name inside.

> help("mean")

Another alternative is to press the F1 key when our cursor is on the function’s name on the console.

Custom functions

R makes it easy to create new functions. We will return to making custom functions in Chapter 6, but for
now here is an example of a function that calculates the arithmetic mean.

> my_mean <- function(x){ sum(x)/length(x) }

Of course, the function mean already exists so there is little need for a custom function that does the same
thing. However, it serves as a simple example of how to make a function. As can be easily surmised, my_mean
takes a vector as input and divides its sum by the number of elements in it. It then returns this values. The x
is a placeholder for whatever variable we input into the function. We would use it just as we would use mean.

> my_mean(primes)
#> [1] 12.9

Step 7: Scripts
Scripts are files where we write R commands, which can be then saved for later use. We can bring up

RStudio’s script editor with Ctrl+Shift+N, or go to the File > New File > R script, or click on the
icon on the left of the taskbar below the menu and choose R script.

Executing code in scripts

In the script in the editor, we can write any R commands that could be written and executed in the console.
Unlike in the console, when we press Enter after a command we type in the editor, the command is not
executed. All Enter does is move the cursor on to the next line in the script, just as would happen in any

text or code editor. If we want to run a command, place the cursor anywhere on the line, and click the
Run icon. This will effectively copy the line to the console and run it there. we can achieve the exact same
effect by pressing Ctrl+Enter. That is, we place the cursor anywhere on line, press Ctrl+Enter, and it will be
copied to the console and executed.

In a script, we can have as many lines of code as we wish, and there can be as many blank lines as we wish.
For example, our script could consist of the following lines.

1 composites <- c(4, 6, 8, 9, 10, 12, 14, 15, 16, 18)
2

21

3 composites_plus_one <- composites + 1
4

5 composites_minus_one <- composites - 1

If we place the cursor on line 1, we can then click the Run icon, or press the Ctrl+Enter keys. The line
is then copied to the console and executed, and then the cursor jumps to the next line of code (line 3). We

can then click Run or press Ctrl+Enter again, which copies line 3 to the console and executes it, and
then the cursor moves to line 5. This way, we can step through a long list of commands, executing them one

by one, by just repeatedly click the Run icon, or repeatedly pressing Ctrl+Enter.

In addition to running the commands in our script line by line, we can select multiple lines with our mouse

and again press the Run icon, or press Ctrl+Enter.

We may also run the entire script at once. This is known as sourcing the script. We may accomplish this by

pressing the Source icon on the left of the editor’s task bar. This then runs a source() command on
the console with the name (or temporary name) of our script.

Multiline commands

One reason why writings in scripts is very practically valuable, even if we don’t wish to save the scripts, is
when we are write long and complex commands. For example, let’s say we are creating a data frame more
than a few variables and more than a few observations per variable. In this case, we can split the command
over multiple lines as in the following example.

1 Df <- data.frame(name = c('jane', 'joe', 'billy', 'bob', 'jim'),
2 age = c(23, 27, 24, 32, 19),
3 sex = c('female', 'male', 'male', 'male', 'male'),
4 occupation = c('doctor', 'tinker', 'tailor', 'soldier', 'spy')
5)

We can execute this command as if it were on a single line by placing the cursor anywhere on any line and

pressing the Run icon, or repeatedly pressing Ctrl+Enter.

When writing multiline commands, it is advisable that we use consistent indentation to increase readability.
The following multiline command will work perfectly, but it is more difficult to read, and perhaps to edit too.

1 Df <- data.frame(name = c('jane', 'joe', 'billy', 'bob', 'jim'),
2 age = c(23, 27, 24, 32, 19),
3 sex = c('female','male', 'male', 'male', 'male'),
4 occupation = c('doctor', 'tinker', 'tailor', 'soldier', 'spy')
5)

We can always get improved and consistent indentation by highlighting all our lines and then going to the
Code menu, and selecting Reindent Lines. More efficiently, we can accomplish the same thing by highlighting
the lines and then pressing Ctrl+I.

Comments

An almost universal feature of programming language is the option to write comments in the code files. A
comment allows us write to notes or comments around the code that is then skipped over when the script
or the code lines are being executed. This is particularly useful to write explanatory notes to ourself or to
others. In R, anything following the # symbol on any line is treated as a comment. Any line starting with
will be ignored completely when the code is being run, and we can place a # at any point on a line, and
anything written after it is also ignored. The following code shows some examples of the use of comments.

22

1 # Here is a data frame with four variables.
2 # The variables are name, age, sex, occupation.
3 Df <- data.frame(name = c('jane', 'joe', 'billy', 'bob', 'jim'),
4 # This line is a comment too.
5 age = c(23, 27, 24, 32, 19), # Another comment.
6 sex = c('female','male', 'male', 'male', 'male'),
7 occupation = c('doctor', 'tinker', 'tailor', 'soldier', 'spy')
8)

Code sections

We can use comments to divide up a script into sections as in the following example.

1 # Create vectors --
2

3 primes <- c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
4 composites <- c(4, 6, 8, 9, 10, 12, 14, 15, 16, 18)
5

6

7 # Some calculations ---
8

9 primes_plus_one <- primes + 1
10 composites_squared <- composites ^ 2
11

12

13 # Some more calculations --
14

15 primes_lt_20 <- primes[primes < 20] # prime numbers less than 20

In this example, we have created three code sections, each one defined by the section header that begins
with # and ends with a sequence of dashes ----. We can always create a new section with Code -> Insert
Section, or the key command Control+Shift+R. In general, however, for the RStudio editor, a code section is
demarcated by any line beginning with # and any with at least four dashes ----, equal signs ====, or hashes
####.

On the one hand, a section is nothing but a set of lines preceded by a commented line that read like a section
header. This, of course, helps to make the code readable. However, RStudio recognizes these sections as
distinct units of the script. For starters, we can jump between sections by selecting the name of the section
listed when we press the icon at the bottom left of the editor. We can also bring up the list of sections by
Alt+Shift+J. In addition, the icon in the top right corner of the editor provides a list of our sections,
which we can jump to by clicking. For short scripts, jumping between sections does not offer much in terms
of efficiency, but this feature is particularly useful for moving between sections in longer scripts.

We may also collapse or expand any of our sections. For example, if our cursor is within the Some
calculations section above, you can do Edit > Folding > Collapse to hide the contents of this sec-
tion. This can also be accomplished with the keyboard shortcut Alt+L. We can expand or uncollapse the
section with Edit > Folding > Expand, which can also be done with Alt+Shift+L. We can collapse all sections
simultaneously with Edit > Folding > Collapse All, or Alt+O, and expand all sections simultaneously with
Edit > Folding > Expand All, Alt+Shift+O.

Another particularly useful feature of code sections is we may also run all the code in a section with Code >
Run Region > Run Code Section, or else with Control+Alt+T shortcut.

23

Saving a script

We save a script just like we would save any other file. On the editor, there’s a button at the top left of
the editor window. Likewise, we can do File > Save, which is mapped to the Ctrl+S keyboard shortcut. The
resulting file is just a text file, and not some special format that can only be read by R or RStudio. In can be
opened in any of the countless programs that can open text files. In principle, it can be named anything we
like. However, it is recommended that we only use lower case letters, numbers, and underscores — so no
spaces or hyphens or dots — and that it should always end with the file extension .R. The .R file extension is
automatically included if it is not already there when we save a script using RStudio.

Step 8: Installing and loading packages
As mentioned above, there are over 17000 add-on R packages as of May, 2021. These are installed on demand,
just as one installs apps on a mobile device. The easiest way to install packages is from the Packages pane,
which is in the lower right window, see left image in Figure 3. There we will see a listing of all the R packages

that are currently installed on our system. In the top right of the window, there is the button. This
refreshes the listing to make sure that any very recently installed packages are also shown in the listing. The
packages are always listed alphabetically, so we can browse through the list to see if what we want is already
there. There is also a search box, which is in the top right. Start typing the name of any package there and
the package listing will be filtered to match what we type.

Figure 3: Left: The packages pane in the RStudio Desktop, which is by default in the lower right right
quadrant window. Right: The install packages dialog box that appears when we press the Install button in
the upper left of the packages pane.

To install a package, click the Install button on the top left. This will bring up a dialog box (see right
image in Figure 3) where we can type in the packages that we want. As soon as we start typing in the box
for the package names, packages matching the characters we’ve typed will be shown. From this, we can select
what we want. We can type the names of multiple packages into the install packages dialog box, separating
them with a space or a comma. When we click Install, we will notice that commands are run in our console.
For example, if we install the package dplyr, we will see the following command appear in our console, which
will then automatically execute.

> install.packages("dplyr")

If we select multiple packages to install — for example, dplyr, tidyr, and ggplot2 — then the same
install.packages command is run, but with a vector of names as the input argument.

> install.packages(c("dplyr", "tidyr", "ggplot2"))

24

Given that the install packages dialog box just runs these commands, we can always type them directly into
the console ourself.

As soon as these commands are executed, we will see the progress of the installation in the R console. There,

in the top left, a will be shown when the installation is occurring and we will see activity happening
in the console. When the installation is complete, the stop sign will disappear and the normal > command
prompt will return to the console.

Which packages to install?

A common question, especially when learning R initially, concerns which packages should we install? There
is no general answer to this question because it heavily depends on the type of analyses we need to do or
the type of data we will be working with. However, we highly recommend always installing the tidyverse
collection of packages. The tidyverse describes itself as “an opinionated collection of R packages designed for
data science . . . (that) share an underlying design philosophy, grammar, and data structures.” We will use
these packages extensively from now on in this book.

Although tidyverse is a collection of packages, and these packages can be individually installed, they can
also be installed en-masse by typing tidyverse into the install packages dialog box, or alternatively by typing
the following in the console.

> install.packages('tidyverse')

Updating packages

R packages are downloaded from the Comprehensive R Archive Network (CRAN), which is a network of
mirror servers that serve out R software and are distributed around the world. We can always check for any

updates to our installed packages using the Update button at the top of our Packages window. This
will list any packages with versions that are more recent that those you have installed. We can then update
some or all of these packages. It is generally a good idea to periodically check for updates and update all
packages if necessary.

Loading packages

Having installed any package, it is now available for use in any R session. However, it needs to be activated
or loaded for this to happen. In other words, our installed packages can only be used when they are loaded
into our R session. We can load them by clicking on the tick box next to the package name in the Packages
listing. Unticking the package will deactivate or unload it. We will notice that when to tick or untick this
box, a library() command is run on the console. This can always be typed directly, rather than clicking
the tick box. For example, to load all the tidyverse packages, do

> library("tidyverse")

Throughout the remainder of this book, we will be using many packages, and we will always load them from
a library() command run on the console.

Package masking

When we load a package, we are often greeted with messages like the following.

> library("dplyr")

Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

filter, lag

25

https://www.tidyverse.org/

The following objects are masked from ‘package:base’:

intersect, setdiff, setequal, union

What this means that the dplyr package has loaded up two functions, filter and lag, that were previously
loaded by the stats package, and four other functions, intersect, setdiff, setequal, and union, that
were loaded previously by the base package. Both the stats and the base packages are loaded by default in
any R session. If we now try to use, for example, filter, we will be given filter function of dplyr rather
than the stats package’s filter function. In general, R searches for functions according to its search path,
which we can see with the following command.

> search()
#> [1] ".GlobalEnv" "package:forcats" "package:stringr"
#> [4] "package:dplyr" "package:purrr" "package:readr"
#> [7] "package:tidyr" "package:tibble" "package:ggplot2"
#> [10] "package:tidyverse" "package:stats" "package:graphics"
#> [13] "package:grDevices" "package:utils" "package:datasets"
#> [16] "package:methods" "Autoloads" "package:base"

So, for example, if we search for a function named filter, we will find the filter in dplyr first, because
dplyr is nearer the start of the search path than the stats package. This does not mean that the masked
functions are unavailable. We can access them directly using the <package name>::<function name> syntax
as in the following examples.

> stats::filter() # The `filter` function in the `stats` package.
> base::intersect() # The `intersect` function in the `base` package.

Step 9: Reading in and viewing data
We mentioned that when we are dealing with real data sets in R, we almost always read them in to R from
files. R allows us to import data from a very large variety of data file types, including from other statistics
programs like SPSS, Stata, SAS, Minitab, and so on, and common file formats like .xlsx and .csv. Here,
we’ll just look at the example of importing .csv files, which is a particularly common scenario anyway, and
the procedure we follow for importing the other file formats is similar.

When learning R initially, the easiest way to import data is using the Import Dataset button in the
Environment pane. This will give us options to import from a number of different file types. If we are
importing .csv, we can choose either From Text (base). . . or From Text (readr). . . . The former option
imports the .csv file using the function read.csv(), which part of the base R set of packages. The latter
option uses the read_csv() function from the readr package, which is part of the tidyverse package
collection. Throughout this book, we recommend always using tidyverse over base R functions whenever
the options are available, and so we will use the From Text (readr). . . option always for importing .csv files.

Upon choosing the From Text (readr). . . option, if the readr package is not yet installed, we will be asked
if to install it. However, it will already be available for us if we installed tidyverse, as described in the
previous step. We will then be given a typical file import dialog box, just as we would encounter in many
other programs, see Figure 4. There we choose the file we want to use using a file browser. At the bottom left
of the dialog box, there are various options about how to parse the .csv file. Often we can use leave these at
their default values. However, it is often a good idea to explicitly choose a new Name for the data frame into
which the contents of the .csv will be read. By default, the name of the data frame will be the file name,
but often it is preferable to have a shorter name. In this book, we usually end the name of the data frame
with _df, e.g. data_df, scores_df, etc. The _df ending makes it clear that the object is a data frame.

We will also notice that in bottom right, there is a Code Preview of the code that will be run in console once
we click the Import button. What this shows us is that the Import Dataset dialog box is just a means to
create a few lines of code that will then be run in the console. We can always write this code, or at least

26

Figure 4: The read_csv based dialog box for reading csv files using readr, which is part of the tidyverse.

its essential parts, explicitly in the console or in a script. In fact, we strongly advise doing so because it is
ultimately much quicker and efficient than going through a GUI dialog box. However, to do this in a re-usable
way, and without having to remember or type long file paths, it is necessary to first understand the concept
of the R session’s working directory, which we will deal with below.

Let’s say the .csv file that we wish to import is named weight.csv and exists in our personal Downloads
directory on a Windows device. If we choose the name weight_df for the imported data, rather than the
default, we should see the following code and output in the Console.

library(readr)
weight_df <- read_csv("C:/Users/andrews/Downloads/weight.csv")
View(weight_df)
#> Parsed with column specification:
#> cols(
#> subjectid = col_double(),
#> gender = col_character(),
#> height = col_double(),
#> height_selfreport = col_double(),
#> weight = col_double(),
#> weight_selfreport = col_double(),
#> age = col_double(),
#> race = col_double()
#>)

The messages displayed after the read_csv command is run (i.e., Parsed with column specification
...) tells us how many variables have been created in the resulting data frame, and of which data types
these variables are. As can be seen we have 8 variables — subjectid, gender . . . race — and corresponding
to each one is either col_double() or, in the case of gender, col_character(). The col_double indicates
that the corresponding variable is a normal numerical variable (“double” refers to double floating point
number, which is a decimal number represented by 8 bytes of memory). The col_characeter indicates that
the gender variable is a character vector.

The last line of the code that was run when import using the Import Dataset is View(Df). This brings up a
data frame viewer that looks like a spreadsheet. With this, we may obviously browse through the variables
and observations, we may sort according to any variable, and using the Filter icon, we can filter the data
set according to selected ranges of values of the variables. Although the View is certainly a useful tool, we
can in fact view, sort, select, filter, etc., the data much more efficiently using command line tools like dplyr.
This is something to which we will return in depth in the next chapter, under the topic of data wrangling.
For now, we will just provide an introduction to viewing the data in the data frame.

27

Certainly the easiest way to look at a data frame in R is simply to type its name in the console as follows.

> weight_df
#> # A tibble: 6,068 x 8
#> subjectid gender height height_selfreport weight weight_selfrepo~ age race
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 10027 Male 178. 180. 81.5 81.7 41 1
#> 2 10032 Male 170. 173. 72.6 72.6 35 1
#> 3 10033 Male 174. 173. 92.9 93.0 42 2
#> 4 10092 Male 166. 168. 79.4 79.4 31 1
#> 5 10093 Male 191. 196. 94.6 96.6 21 2
#> 6 10115 Male 172 175. 80.2 79.4 39 1
#> 7 10117 Male 181 183. 116. 113. 32 2
#> 8 10237 Male 185 188. 95.4 95.7 23 1
#> 9 10242 Male 178. 178. 99.5 99.8 36 1
#> 10 10244 Male 181. 183. 70.2 72.6 23 1
#> # ... with 6,058 more rows

From this, we see a lot. We see that there are 6068 rows and 8 variables. We see the first 10 values of the first
seven of the variables, and see that there is also one additional variable, race, whose values are not shown.
We also see the corresponding data type of each of the variables. At the top of the listing, we see that the
data frame is a tibble. A tibble is simply a tidyverse flavoured data frame. It is a regular data frame but
with some relatively minor additional features.

The number of observations, variables, and even the number of significant digits that are shown can be
controlled by setting options. For example, by default, 10 observations will be shown. If we want, say, up to
15 observations to be shown by default, we can do

> options(tibble.print_max = 15, tibble.print_min = 15)

The tibble.print_max and tibble.print_min can be different. For example, we can set them as follows.

> options(tibble.print_max = 15, tibble.print_min = 5)

In this case, any tibble with up to 15 observations will be shown in full, but if it has over 15 observations,
then only the first 5 observations will be shown. The number of displayed variables, on the other hand, is set
with the tibble.width option. If we always wish to see all rows of all tibble data frames, we can set the
following options.

> options(tibble.print_max = Inf)

For an individual tibble data frame such as weight_df, we can show all rows as follows.

> print(weight_df, n = Inf)

By default, only the number of columns that can fit on the console will be displayed. This means, of course,
that when we widen our console, we may always fit in more variables, and if we’re using a narrower console,
fewer variables are shown. If we always want all variables to be displayed, wrapping them if necessary to fit,
then set tibble.width to Inf.

> options(tibble.width = Inf)

We may set tibble.print_max, tibble.print_min, tibble.width back to their default behaviour as follows.

> options(tibble.print_max = NULL, tibble.print_min = NULL, tibble.width = NULL)

We can control the number of significant digits that are displayed by the pillar.sigfig option.

> options(pillar.sigfig = 5)

28

Step 10: Working directory, RStudio projects, and clean workspaces
Every R session has a working directory, which we can think of as the directory (aka folder) on the computer’s
filesystem in which the R session is running. In other words, we can think of the R session as belonging to, or
running inside, some directory somewhere on the system. By default, this is often the user’s home directory.
We can always list our session’s working directory with getwd(). On Windows, this will appear something
like the following.

> getwd()
> #> [1] "C:/Users/andrews"

On Macs, it will appear something like the following.

> getwd()
> #> /Users/andrews/

The practical importance of the working directory is that it is the default location from which files are read
and to which files are written whenever we are using relative rather than absolute path names. The use of
relative paths is necessary to allow our R scripts to be usable either by others or by ourselves on different
devices.

An absolute path name gives the exact location of the file on the file system by specifying the file’s
name, the directory it is in, the directory in which its directory is located, and so on, up to the root
of the filesystem. For example, on a Windows machine, an absolute path name for a file might be
C:/Users/andrews/Downloads/data/data.csv. From this, we see that the file data.csv is a directory
named data that is in Downloads in andrews in Users on the C drive. We could read this file into R with
the following command.

data_df <- read_csv("C:/Users/andrews/Downloads/data/data.csv")

This command will always work (assuming the file and directories exist) regardless of what the R session’s
working directory is. A relative path name, on the other hand, might be data/data.csv. This specifies
that data.csv is in a directory called data, but it does not explicitly tell us the location of data. In these
situations, the location is always assumed to be the R session’s working directory. Consider the following
commands.

data_1_df <- read_csv("data.csv")
data_2_df <- read_csv("data/data.csv")

The first would read in the file data.csv from the working directory, while the second would read the file
data.csv from the data sub-directory in the working directory. Likewise, the command

write_csv(data_df, 'my_new_data.csv')

will write the data to the file my_new_data.csv in the current working directory.

In general, R scripts that use absolute path names are not usable either by others or by ourselves on different
machines. For example, if I had the following script, it would only be usable by me on a particular device.

data_df <- read_csv("C:/Users/andrews/Downloads/data/data.csv")

some_function(data_df)

If I wanted to share this code with others, or use it myself on another device, then it would be better to use
relative paths as in the following examples.

data_df <- read_csv("data.csv")

some_function(data_df)

Assuming that data.csv is the session’s working directory, this code will now work everywhere for anyone.

29

The working directory for the R session can always be changed by going to Session > Set Working
Directory > Choose Directory, which can be obtained by the key command Ctrl+Shift+H. This allows
us to set the working directory to be any directory of our choice.

RStudio projects

When we are working on a particular data analysis task, one that might involve multiple interrelated data
files and scripts, it is usually a good idea to set the working directory to be the directory where all these
scripts and data files are located. For example, let’s say the directory where we kept our scripts and data was
data_analysis and was organized as follows.

data_analysis/
-- script_1.R
-- script_2.R
-- data/

-- data_1.csv
-- data_2.csv

In this case, it would be advisable to set the working directory to be the location of data_analysis whenever
we are working on these files. Inside the script_1.R or script_2.R scripts, we would then be able to include
commands code such as the following.

data_1_df <- read_csv('data/data_1.csv')

Having set the working directory to the location of data_analysis, whenever these scripts are run, they
would always refer to the appropriate data files.

To facilitate this, RStudio allows us to set our data_analysis directory as an RStudio project. To do so, we
go to File > New Project and choose Existing Directory and then choose the data_analysis directory.
Likewise, if we have other directories with their own sets of inter-related files and scripts, we can set these
as separate projects too. Having set up these projects, whenever we start RStudio, we can open a project,
and then switch between projects. Whenever we open a project, or switch between projects, our working
directory is then automatically switched to the project’s directory. As such, our working will always be set to
the appropriate directories for whichever files we are working on and it need never be set manually.

RStudio projects also allow us to have project specific settings for our command history. In other words, all
the commands used whenever we are working on a particular project will be saved to a history file specific to
that project which can be loaded automatically every time we open or switch to that project. We can ensure
that our history is always saved by set the Always save history option in Tools > Project Options.

Clean workspaces

In general, R allows us to always save the contents of our workspace to a file, usually named .RData, when
terminating our session. The contents of our workspace is the collection of objects, e.g., data sets and other
variables we’ve created, that exists in our R session. This collection can be viewed in the Environment
window. If we save these objects to file, they can be automatically loaded the next time we start R.

This saving and loading of the workspace may seem like a very useful feature. For example, if we’ve been
working for a long session, perhaps creating multiple new data frames and other data structures, it may seem
particularly useful to be able to save them all to file, and then reload them back in to our session when we
start again. However, despite appearance, this may be counterproductive. We may end up with a cluttered
workspace that is full of objects, many of which were intended to be only temporary. Even of those we do
wish to keep, we may not be sure where they came from or how they were created. It is much better practice
to always write code that creates the variables and data structures that we need. For example, rather than
saving many data frames that we have derived from processing some raw data that we initially imported, it
is far better to have a single script that reads the raw data and then runs a series of commands on this data,
thus creating, or re-created, all the derived data frames.

30

RStudio projects also give us the option of always saving or never saving our workspace, and always or
never loading the workspace file at startup. These options are available in Tools > Project Options. We
recommend that we always set these options to never save nor load the contents of the workspace. This
ensures that we always have, or can have, a clean workspace whose contents we are in control of.

At any point during our RStudio session, we can restart R itself through Session > Restart R. Doing so
prior to running any script is good practice because it ensures that our script will not have any hidden
dependencies, and that any data structures or functions etc that it does depend on are created from are
contained in the code itself.

References
Muenchen, Robert A. 2019. “The Popularity of Data Science Software.” http://r4stats.com/articles/popular
ity.

“PYPL Popularity of Programming Language.” 2020. http://pypl.github.io/PYPL.html.

“The Redmonk Programming Language Rankings: June 2020.” 2020. https://redmonk.com/sogrady/2020/0
7/27/language-rankings-6-20/.

“TIOBE Index.” 2020. https://www.tiobe.com/tiobe-index.

“What Is Free Software?” 2020. https://www.gnu.org/philosophy/free-sw.html.

31

http://r4stats.com/articles/popularity
http://r4stats.com/articles/popularity
http://pypl.github.io/PYPL.html
https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
https://redmonk.com/sogrady/2020/07/27/language-rankings-6-20/
https://www.tiobe.com/tiobe-index
https://www.gnu.org/philosophy/free-sw.html

	What is R, and why should we use it?
	A power tool for data analysis
	Open source software
	Popularity

	Installing R and RStudio
	Installing R
	Installing RStudio Desktop

	Guided Tour of RStudio Desktop
	Rstudio menus

	First steps in R
	Step 0: Using the R console
	Step 1: Using R as a calculator
	Step 2: Variables and assignment
	Step 3: Vectors
	Step 4: Data frames
	Step 5: Other data structures
	Step 6: Functions
	Step 7: Scripts
	Step 8: Installing and loading packages
	Step 9: Reading in and viewing data
	Step 10: Working directory, RStudio projects, and clean workspaces

	References

