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Data visualization is a major part of data analysis. Far from being just a means to add some eye-candy
or ornamentation to otherwise dull reports or powerpoint slides, visualization allows us explore data and
find patterns that would easily be missed were we to rely only on numerical summary statistics. A classic
example that vividly illustrates this point is known as Anscombe’s quartet (Anscombe 1973). In this example,
there are 4 separate data sets, each with two variables labelled x and y. The means and standard deviations
of both the x and y variables are identical across all four data sets. Likewise, the Pearson’s correlation
coefficient between the x and y is also identical across the data sets. These summary statistics are shown in
the following table.

set mean(x) mean(y) sd(x) sd(y) cor(x, y)
I 9 7.5 3.32 2.03 0.82
II 9 7.5 3.32 2.03 0.82
III 9 7.5 3.32 2.03 0.82
IV 9 7.5 3.32 2.03 0.82

On the basis of these numbers, the four data sets seem to be identical, or at least it seems likely that they
will be highly similar. However, when we visualize the scatter plots of x and y variables for each case, it
is evident that they differ from one another in substantial ways, see Figure 1. A key characteristic of data
visualization, therefore, is that “it forces us to notice what we never expected to see” (Tukey 1977). In other
words, data visualization is not simply a means to graphically illustrate what we already know, but to reveal
patterns and structures in the data.

1



III IV

I II

5 10 15 5 10 15

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

x

y

Figure 1: Anscombe’s quartet. Across all of the four data sets shown here, the means and standard deviations
of the x and y variables are identical, as is the correlation between x and y.

There is no strict formula or procedure that we must always follow when visualizing data. Any data set can
be visualized is many ways; some of these will be informative and provide insight, others will not. Generally,
we should aim to fully explore the data and maximize what can be learned from it. To do so, we should
always try to look at the data in different ways, from different perspectives, and at coarser and finer levels.
This process is iterative in that we may start with something very simple and then progressively refine it.
Sometimes, we need to work by trial and error, starting with some visualization technique that then needs to
be abandoned in favour of another. In general, we should keep in mind some guiding principles. For example,
Hartwig and Dearing (1979), when describing exploratory data analysis generally, state we that we should
be guided by principles of scepticism and openness. We ought to be sceptical to the possibility that any
visualization may obscure or misrepresent our data, and we should be open to the possibility of patterns and
structures that we were not expecting. Some guiding principles for visualization mentioned by Edward R.
Tufte in his Visual Display of Quantitative Information (Tufte 1983) are the following.

• Above all else show the data
• Avoid distorting what the data have to say
• Present many numbers in a small space
• Encourage the eye to compare different pieces of data
• Reveal the data at several levels of detail, from a broad overview to the fine structure

Just as we have guiding principles, so too are there major visualization tools or techniques that should
generally be known. The major tools that we will consider here primarily include the following.

• Histograms, density plots, bar plots: These are used to display the distribution of values of continuous
and discrete variables.

• Boxplots: Like histograms and density plots, boxplots (or box-and-whisker plots) display the distribution
of values of continuous variables. However, they are more closely tied to robust statistical descriptions
and so deserve to be treated as a class onto themselves.

• Scatterplots: Scatterplots and their variants such as bubbleplots are used to display bivariate data, or
the relationships between two variables. Usually, scatterplots are used in cases where both variables are
continuous, but may also be used, though perhaps with additional modification, when one variable is
discrete.

There are, however, many other important types of data visualization methods. For example, heatmaps are
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used to display large rectangular grids of data, and geospatial maps display data superimposed on maps of
physical space such as a country. As important as these methods are, we have not included them in order
to keep this chapter of a manageable size. There are many goods books that delve much deeper into data
visualization using ggplot. Highly recommended is Healy (2019).

Plotting in R with ggplot

In R, there are two major sets of tools for visualization. These are usually known as the base R and the ggplot
plotting systems. The base R plotting system is part of the default, or base, installation of R. Its principal
command is plot. The ggplot system is provided by the ggplot2 package (see Wickham 2016), which is
part of the tidyverse, and its principal command is ggplot. The gg in its name refers to the grammar of
graphics (Wilkinson 2005; Wickham 2010), which is a system of rules for mapping variables in a data set to
properties (e.g. shape, size, colour, position) of a plot. While the base R plotting system is powerful and not
to be dismissed or seen as obsolete, here will exclusively use ggplot. The reason for this is that ggplot is a
higher level plotting system, meaning that allows us to create complex visualizations with a minimal amount
of code. The same visualizations can almost always be produced using the base plot as well, but doing so
usually involves much more code and much more fine tuning.

To use the ggplot plotting system, we must first load the ggplot2 package. This can be loaded direcly as
follows.

library(ggplot2)

Alternatively, we can just load tidyverse, which then loads ggplot2.

library(tidyverse)

There are three key pieces of information that we specify with the ggplot command:

1. The data set containing all the data. This is almost always a single data frame, but sometimes it is
multiple data frames.

2. A set of aesthetic mappings. This is where we map variables in the data frame to properties like shape,
size, colour, position, etc., of the graphic.

3. A set of layers that render the aesthetic mappings, usually according to prespecified geoms or geometric
objects like lines, points, bars, etc.

The best way to understand these components and how ggplot works is to work with some very simple
examples. To begin, we’ll create a very simple data frame.

simple_df <- tribble(
~var1, ~var2, ~var3,
1, 4, 'a',
3, 10, 'a',
7, 40, 'b',
10, 90, 'b'

)

Let’s say that we want to create a simple scatterplot where the values of var1 specify the position of points
along the x-axis and the values of var2 specify the positions of points along with y-axis. To do so, we would
start by specifying the data frame we’re using as simple_df and the specify the aesthetic mapping we want
as in the following command.

ggplot(simple_df,
mapping = aes(x = var1, y = var2)

)
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As can be seen, in itself, this did not produce much. It essentially created a blank canvas with the var1
and var2 mapped to the x-axis and y-axis, respectively. To see the points, we need to add a layer that tells
ggplot how to render the graphic using the mapping we have set up. Because we want a scatterplot, we use
the geom_point geom function as follows.

ggplot(simple_df,
mapping = aes(x = var1, y = var2)

) + geom_point()
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If we now prefer to display this same data using a line plot, we can exchange geom_point() for geom_line().

ggplot(simple_df,
mapping = aes(x = var1, y = var2)

) + geom_line()
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We could extend the original scatterplot by adding an additional aesthetic mapping by using var3. Because
this is a discrete variable, it could be mapped to a discrete property of the points, such as their shape. This
is very simple to do. We need only add shape = var3 to the aes function, and then when we render with
geom_point, the points will have shapes according to their values of var3.

ggplot(simple_df,
mapping = aes(x = var1, y = var2, shape = var3)

) + geom_point()
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Or if we prefer to represent var3 with colours, we could use colour = var3 (we could also use color =
var3, if you prefer American English spelling, or even just col = var3).

ggplot(simple_df,
mapping = aes(x = var1, y = var2, colour = var3)

) + geom_point()
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These examples just scratch the surface of what ggplot is capable of, but they do illustrate its general
functionality. In the following sections, we will provide much more depth and explore many more features of
ggplot. Before we proceed, we should note that in all the above example, we were using somewhat verbose
commands. For example, the second argument to ggplot is always assumed to be the aes mapping (the first
argument is always the name of the data frame), so we could drop mapping =, as in the following example.

ggplot(simple_df,
aes(x = var1, y = var2)

) + geom_point()

Likewise, because the first and second argument to aes are assumed to be the x and y axis mapping, we
could drop the x = and y =, as in the following example.

ggplot(simple_df,
aes(var1, var2)

) + geom_point()

In what follows, we will usually keep the more verbose style, but you may prefer to drop it as you get more
used how ggplot works.

Histograms. density plots, bar plots, etc
Histograms and related visualization methods like frequency polygons, area plots, density plots, and bar
plots, are simple but still highly effective tools to visualize the distribution of values of continuous variables.

Histograms
Histograms are one of the simplest and generally useful ways of visualizing distributions of the values of
individual variables. To illustrate them, we’ll use the weight data frame, from which will be downsample to
1000 points.

weight_df <- read_csv("data/weight.csv") %>%
sample_n(down_sample)

If we want to display the distribution of the height variable, we would proceed as follows.

ggplot(weight_df,
mapping = aes(x = height)
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) + geom_histogram()
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By default, the histogram will have 30 bins. It is usually good to override this either by specifying another
value for bins, or by specifying the binwidth. Given that the height variable is measured in centimeters,
we can specify that each bin should be 2.54 cm, or one inch, as follows.

ggplot(weight_df,
mapping = aes(x = height)

) + geom_histogram(binwidth = 2.54)
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Any histogram consists of a set of bars, and each bar has a colour for its interior and another for its border.
The interior colour is its fill colour, while colour specifies the colour of its border. If, for example, we wanted
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a histogram with dark blue interior and white border, which may help to distinguish between consecutive
bars, we would do the following.

ggplot(weight_df,
mapping = aes(x = height)

) + geom_histogram(binwidth = 2.54, colour = 'white', fill = 'darkblue')
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If, in the aes mapping, we specify that either colour or fill, or both, should be mapped some another
variable with discrete values, we obtain a stacked histogram. In following example, we set the fill values to
vary by the gender variable.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_histogram(binwidth = 2.54, colour = 'white')
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In a stacked histogram, the colour within each bin codes the proportion of that bin’s values that correspond
to each value of the discrete variable. A variant of the stacked histogram above is where each bar occupies
100% of the plot’s height so that what is shown is the proportion of the bin’s value corresponding to each
value of the grouping variable. We can obtain this type of plot with by setting position to fill within
geom_histogram (by default, geom_histogram has position = stack), as in the following example.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_histogram(binwidth = 2.54, colour = 'white', position = 'fill')
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If, rather than a stacked histogram, we want two separate histograms, one for males and another for females,
we can use other options. One option is to specify position = 'dodge' within geom_histogram as follows.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_histogram(binwidth = 2.54, colour = 'white', position = 'dodge')
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This option uses the same bins as before but puts two non-overlapping bars at each bin, one for males and
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one for females. An alternative option is to place the bars corresponding to males and females at the exact
same location by using position = 'identity' within geom_histogram as follows.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_histogram(binwidth = 2.54, colour = 'white', position = 'identity')
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Notice that when using this position = 'identity' option, the second group, which in this case corresponds
to the males, occludes the first one. We can avoid complete occlusion by setting the alpha, or opacity, level
of the bars to be a value less than 1.0 as in the following example.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_histogram(binwidth = 2.54, colour = 'white', position = 'identity', alpha = 0.75)

0

25

50

75

100

160 180 200
height

co
un

t gender

Female

Male

Another option to deal with occlusion is to map gender to colour rather than fill, and set fill to be
white.

ggplot(weight_df,
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mapping = aes(x = height, colour = gender)
) + geom_histogram(binwidth = 2.54, fill = 'white', position = 'identity', alpha= 0.5)
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Frequency polygons
A frequency polygon is similar to a histogram but instead of using bars to display the number of values in
each bin, it uses connected lines. The following plot displays the number of height values in each bin of
width 2.54cm.

ggplot(weight_df,
mapping = aes(x = height)

) + geom_freqpoly(binwidth = 2.54, colour = 'steelblue')
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If we map gender to colour, we produce two overlaid lines. This is the frequency polygon equivalent of the
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histogram using position = 'identity'.

ggplot(weight_df,
mapping = aes(x = height, colour = gender)

) + geom_freqpoly(binwidth = 2.54) # `position = 'identity'` is the default
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If we prefer a stacked frequency polygon, we use position = 'stack'.

ggplot(weight_df,
mapping = aes(x = height, colour = gender)

) + geom_freqpoly(binwidth = 2.54, position = 'stack')
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A related option is an area plot. To get the equivalent of the overlaid histograms, but will filled interiors,
instead of using geom_freqpoly, we can use geom_area.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_area(binwidth = 2.54, stat = "bin", position = 'identity', alpha = 0.5)
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To obtained a stacked area plot, change position to have the value of 'stack'.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_area(binwidth = 2.54, stat = "bin", position = 'stack')
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We also have the option of setting position to have the value of 'fill'.

ggplot(weight_df,
mapping = aes(x = height, fill = gender)

) + geom_area(binwidth = 2.54, stat = "bin", position = 'fill')
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Density plots
Histograms work by dividing the range of values of a variable into equal sized bins and simply counting the
number of values in each bin. Density plots, on the other hand, uses kernel density estimation to estimate a
probability density over the variable. In practical terms, we can see this as moving average smoothing of
histograms. The default density plot of the height variable is obtained as follows.

ggplot(weight_df,
mapping = aes(x = height)

) + geom_density()
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As with the histogram, we may change the colour of the border and the interior of the density plot with
colour and fill, respectively.
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ggplot(weight_df,
mapping = aes(x = height)

) + geom_density(colour = 'white', fill = 'darkblue')
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If we set fill or colour, or both, to map to gender, then the default result is the density plot equivalent of
overlaid histograms above. As seen in the following example, we avoid complete occulusion of one density
plot by the other by use of the alpha parameter.

ggplot(weight_df,
mapping = aes(x = height, fill = gender, colour = gender)

) + geom_density(alpha = 0.5)
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To accomplish the density plot equivalent of the stacked histogram, we set position = 'stack'.

ggplot(weight_df,
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mapping = aes(x = height, fill = gender, colour = gender)
) + geom_density(position = 'stack')
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The density plot equivalent of the filled stack histogram is accomplished with position = 'fill'.

ggplot(weight_df,
mapping = aes(x = height, fill = gender, colour = gender)

) + geom_density(position = 'fill')
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Barplots
Both histograms and density plots assume that the variables are continuous. For discrete variables, their
counterpart is a bar plot. For each value of the discrete variable, the bar plot displays the number of observed
instances of that value in the data. As example, the following titanic data frame tells us, for each of the
1309 passengers on the RMS Titanic on its fateful maiden voyage in 1912, their sex, age, and passenger class,
and whether they survived or not.
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titanic_df <- read_csv('data/TitanicSurvival.csv') %>% select(-X1)
glimpse(titanic_df)
#> Rows: 1,309
#> Columns: 4
#> $ survived <chr> "yes", "yes", "no", "no", "no", "yes", "yes", "no", ...
#> $ sex <chr> "female", "male", "female", "male", "female", "male"...
#> $ age <dbl> 29.0000, 0.9167, 2.0000, 30.0000, 25.0000, 48.0000, ...
#> $ passengerClass <chr> "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1s...

The number of passengers in each passenger class is given by the following bar plot.

ggplot(titanic_df,
mapping = aes(x = passengerClass)

) + geom_bar()
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If we map the fill property to the variable survived, we may see the number of passengers in each class
who survived or not.

ggplot(titanic_df,
mapping = aes(x = passengerClass, fill = survived)

) + geom_bar()
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We may display the same information using side by side bars, one for those who survived and other for those
who did not, as follows.

ggplot(titanic_df,
mapping = aes(x = passengerClass, fill = survived)

) + geom_bar(position = 'dodge')
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Sometimes, we wish to draw a barplot where the heights of the bars are given by the value of a variable in
the data set. Consider the following small data set.

carprices <- read_csv('data/carprice.csv') %>%
group_by(Type) %>%
summarise(price = mean(Price))

carprices
#> # A tibble: 6 x 2
#> Type price
#> <chr> <dbl>
#> 1 Compact 12.8
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#> 2 Large 24.3
#> 3 Midsize 21.8
#> 4 Small 10.0
#> 5 Sporty 19.4
#> 6 Van 18.3

In this, we have two variables Type, which indicates a type of vehicle, and price, which gives the average
price of each vehicle type. We can plot this data by mapping the y attribute to price and indicated stat =
'identity' in geom_bar.

ggplot(carprices,
mapping = aes(x = Type, y = price)

) + geom_bar(stat = 'identity')
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Mapping the fill variable allows us to display values for two discrete variables.

fat_rats <- read_csv('data/FatRats.csv') %>%
group_by(Protein, Source) %>%
summarize(gain = mean(Gain), se = sd(Gain)/sqrt(n()))

ggplot(fat_rats,
mapping = aes(x = Source, y = gain, fill = Protein)

) + geom_bar(stat = 'identity', position = 'dodge')
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In this example, we see that the bars corresponding Hi and Lo values of Protein are touching one another,
while there is a gap between the pair of bars corresponding to the Beef, Cereal, Pork values of Source.
How close the Hi and Lo bars are is determined by the width parameter of dodge, which defaults to
0.9 in this case. If we wish to change this parameter, for example, to a width of 1.0, we need to use
position = position_dodge(width = 1.0) (the statement position = 'dodge' is a shortcut to position
= position_dodge()).

ggplot(fat_rats,
mapping = aes(x = Source, y = gain, fill = Protein)

) + geom_bar(stat = 'identity', position = position_dodge(width = 1.0))
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Notice that when the width of the position dodge is set to 1.0, the distance between all bars in plot is the
same. Thus, by setting width lower than 1.0, we push the two bars in each pair closer together.

We may add error bars to these bar plots using geom_errorbar. With geom_errorbar, in order to position
the errorbar at the center of each bar, we must set the width of the position_dodge of the geom_errorbar
to match the default dodge width of the bars, which is 0.9.
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ggplot(fat_rats,
mapping = aes(x = Source, y = gain, fill = Protein, ymin = gain - se, ymax = gain + se)

) + geom_bar(stat = 'identity', position = 'dodge') +
geom_errorbar(width = 0.2, position = position_dodge(width = 0.9))
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As a word of warning, although the barplot with standard error error-bars has been and still is widely used in
academic paper, it is highly not recommended as a means of displaying the distribution of values for different
groups or categories. As has been made clear in, for example, Weissgerber et al. (2015), bars with standard
errors hide the raw data and tend to conceal and obscure more than reveal, thus going against almost all the
guiding principles for data visualization that we mentioned above.

Tukey boxplots
Boxplots, also known as box and whisker plots, are used to display the distribution of values of a variable.
One subtype of boxplot is the Tukey boxplot (Tukey 1977). These are in fact most common subtype and are
the default type implemented in ggplot2 using the geom_boxplot function.

For some of following examples, we’ll use the R built-in swiss data set used that provides data on fertility
rates in 47 Swiss provinces in 1888. One predictor variable, Examination, gives the proportion of army
draftees in that province who received the highest mark on an army examination. Another, Catholic, gives
the proportion of province who are Catholic. Because each province either has a clear majority Catholic, or a
clear majority of Protestant, we will create a new logical variable, catholic, that indicates if the province’s
Catholic proportion is greater than 0.5 or not. The data frame also has the name of the province as its row
name, and we will create a new variable with these names.

swiss_df <- swiss %>% rownames_to_column('province') %>%
mutate(catholic = Catholic > 50)

In the following plot, we use a Tukey boxplot to display the distribution of the Fertility variable in the
swiss data set.

ggplot(swiss_df,
mapping = aes(y = Fertility)

) + geom_boxplot()
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Notice that in this case, where we are displaying the distribution of a single variable only, we only set the y
attribute in the aes mapping. The boxplot extends along the y axis, is centered at 0 on the x-axis and the
left and right edges of the box are positioned at x ≈ −0.4 and x ≈ 0.4. This default style for a single boxplot
can be improved by indicating that the x axis variable is discrete by setting x = '' within the aes mapping,
and then changing the width of the boxplot.

ggplot(swiss_df,
mapping = aes(x = '', y = Fertility)

) + geom_boxplot(width = 0.25)
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We may convert this vertically extended boxplot to a horizontal one by a coord_flip().
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ggplot(swiss_df,
mapping = aes(x = '', y = Fertility)

) + geom_boxplot(width = 0.25) +
coord_flip()
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Tukey boxplots are defined as follows:

1. The box extends from the 25th to the 75th percentile.
2. The line or band within the box is the median value, which is also the 50th percentile.
3. The whiskers extend to the furthest points above the 75th percentile, or below the 25th percentile, that

are within 1.5 times the inter-quartile range (the range from the 25th to the 75th percentile).
4. Any points beyond 1.5 times the inter-quartile range above the 75th percentile or below the 25th

percentile is represented by a point and is classed as an outlier.

From a Tukey boxplot, we obtain robust measures of both central tendency, given by the band within the
box, and of the the scale, given by the width of the box. We may also see whether and to what extent the
distribution is skewed, both by the relative position of band within the box and the relative lengths of the two
whiskers. We may also obtain a sense of kurtosis from the Tukey boxplot, which will describe in more detail
below. However, clearly we are not showing all the available data, and visual summaries, however robust and
efficient, can always conceal or obscure some important informative. It is generally a good idea, therefore, to
supplement the boxplot with visualizations of the individual data points. One possibility is to provide a rug
plot, which displays the location of every data point using a short line, as we see in the following example.

ggplot(swiss_df,
mapping = aes(x = '', y = Fertility)

) + geom_boxplot(width = 0.25) +
coord_flip() +
geom_rug(sides ='l')
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Note that we specify sides = 'l' in the geom_rug function to indicate that the rug should only be shown
on the left axis, which is the bottom when the axis is flipped.

Another option for displaying all the day, which can also be used in combination with the rug plot, is to
provide a jitter plot as follows.
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ggplot(swiss_df,
mapping = aes(x = '', y = Fertility)

) + geom_boxplot(width = 0.25) +
geom_rug(sides = 'l') +
geom_jitter() +
coord_flip()
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A jitter plot is like a scatterplot but where each point is randomly perturbed, which is useful if points tend to
occur in identical or very close locations. The jitter plot just shown, however, may be tidied up by reducing
the spread of the points along the vertical axis so that they are within the width of the box on that axis (using
the width parameter of the geom_jitter function), and by reducing their size (using the size parameter).
In addition, the outlier points no longer need to be displayed because all points will now be displayed by
the jitter plot. We not display the outlier points by setting outlier.shape = NA within the geom_boxplot
function.

ggplot(swiss_df,
mapping = aes(x = '', y = Fertility)

) + geom_boxplot(width = 0.25, outlier.shape = NA) +
geom_rug(sides = 'l') +
geom_jitter(width = 0.1, size = 0.75) +
coord_flip()
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By mapping the x property to a third variable, we may display multiple box plots side by side.

ggplot(swiss_df,
mapping = aes(x = catholic, y = Fertility)

) + geom_boxplot(width = 0.25, outlier.shape = NA) +
geom_jitter(width = 0.1, size = 0.75)

24



40

60

80

FALSE TRUE
catholic

F
er

til
ity

When comparing boxplots, one convention is to scale the width of the box with the square root of the sample
size, which we may doing by setting varwidth to TRUE. In addition, we may set notch to TRUE to provide a
measure of the uncertainty concerning the true value of the median (calculated by 1.58 times the inter-quartile
range divided by the square root of the sample size).

ggplot(swiss_df,
mapping = aes(x = catholic, y = Fertility)

) + geom_boxplot(width = 0.25, outlier.shape = NA, varwidth = T, notch = T) +
geom_jitter(width = 0.1, size = 0.75)
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Note, however, that when the median band is close to either the 25th or 75th percentile, the notch may not
display properly and so is not generally useful.

It may be helpful to colour code the different boxplots using colour or fill, or both. In this case, because
the legend will be superfluous (given that the boxplots will be labelled by the x-axis), we may remove the
legend by setting legend.position = 'none' in the theme function.

morley %>%
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mutate(Expt = as.factor(Expt)) %>%
ggplot(

mapping = aes(x = Expt, y = Speed, fill = Expt)
) + geom_boxplot(width = 0.25, outlier.shape = NA, varwidth = T) +

geom_jitter(aes(colour = Expt), alpha = 0.5, width = 0.1, size = 0.75) +
theme(legend.position = 'none')
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Finally, we may use another variable, other than that used for the x axis, as the colour variable, thus
displaying boxplots for each combination of the values of the two grouping variables. For example, in the
following plot, we display one boxplot for the length (len) of tooth growth for each combination of the three
levels of a dose variable and two different methods of supply supp. In this case, if we want to use jitters in
addition to the boxplots, we need to position the jitters using position_jitterdodge.

ToothGrowth %>%
mutate(dose = as.factor(dose)) %>%
ggplot(mapping = aes(x = dose, y = len, colour = supp)

) + geom_boxplot(outlier.shape = NA, varwidth = T) +
geom_jitter(position = position_jitterdodge(0.5), size = 0.75)
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Scatterplots
We’ve already seen some simple scatterplots. Here, we’ll provide more in depth coverage using the weight_df
data frame. The following code will display a scatterplot of weight as a function of height.

ggplot(weight_df,
mapping = aes(x=height, y=weight)

) + geom_point()
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In this example, the values of the height, and weight determine the x and y coordinates of the points. Other
attributes of the points, like their shape, size, etc., are not determined by the data, and so are set to their
default values, which in this case corresponds to filled dots of unit size. In general, however, we always change
these attributes that are not determined by the data from their default values by specifying size, shape,
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etc., values within the geoms. For example, we change the previous plots to have points that are 0.5 the size
of the original and are triangles as follows.

ggplot(weight_df,
mapping = aes(x=height, y=weight)

) + geom_point(size = 0.5, shape='triangle')
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As in histograms, density plots, bar plots, etc., as we’ve seen, scatterplots can also have the colour of the
points determined by another variable. The following example, we colour code the points according to whether
the observation corresponds to a male or a female.

ggplot(weight_df,
mapping = aes(x=height, y=weight, colour = gender)

) + geom_point(size = 0.5)
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Adding marginal distributions
Scatterplots display pairs of values as points in two dimensional space. It is often useful to also simultaneously
see the distribution of the values over the individual variables. There are a few different options to do so. A
common choice is to use a rug plot, like we saw above in the case of boxplots, which displays values on each
dimension as short lines. In the following example, we’ll change the alpha transparency value and the line
width (using size) to make the rug plot less cluttered.

ggplot(weight_df,
mapping = aes(x=height, y=weight, colour=gender)

) +
geom_point(size = 0.5) +
geom_rug(alpha = 0.5, size = 1/10)
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A wider set of options for marginal distributions in scatterplots is available with the ggMarginal function
that is part of the ggExtra package.

library("ggExtra")

To use ggMarginal, we need to first assign the plot object to a named variable such as p.

p <- ggplot(weight_df,
mapping = aes(x=height, y=weight, colour=gender)

) + geom_point(size = 0.5)

Notice that in this case nothing is displayed. The ggplot function creates the scatterplot as before, but
assigns it to p rather than displaying it. We may now display the scatterplot with its marginal distributions
as follows.

ggMarginal(p)
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As can be seen, by default, a density function for the height and weight variables are displayed along the
top and right sides, respectively. In addition, by default, the grouping colour is not shown. We can override
these defaults. For example, to produce a marginal histogram, rather than a density plot, that uses the aes
colour mapping, we may do the following.

p <- p + theme(legend.position = 'bottom')
ggMarginal(p, type = 'histogram', groupColour = T, groupFill = T,

position = 'identity', alpha = 0.5)
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Notice also that in this plot, we moved the legend that displayed the aes colour mapping to the botttom of
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the plot using the theme() function.

Adding a smoothing function
A loess (locally estimated scatterplot smoothing) smoother aims to capture the trends in a scatterplot by
fitting locally weighted regression function, usually a low degree polynomial, at evenly spaced values along
the range of values of the predictor or explanatory variable. Its local weighting feature weights data points
closer the central point more than those further away. The loess smoother is the default smoother for use
with scatterplots and can be obtained using geom_smooth().

In the following plot, we display a scatter plot of the fertility rate against the Examination score of each
province.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility)

) + geom_point() + geom_smooth()
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By default, the loess smoother uses 80 evenly spaced points in the range of the predictor variable, and uses a
linear regression at each point. We can change the number of evaluation points and the regression function
to use specifying the value of n and formula, respectively in geom_smooth. For example, in the following
example, we evaluate linear regression at 5 points.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility)

) + geom_point() + geom_smooth(n = 5, formula = y ~ x)
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We can produce a linear fit to the scatterplot by setting method = 'lm' in geom_smooth() as in the following
plot.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility)

) + geom_point() + geom_smooth(method = 'lm')

40

60

80

10 20 30
Examination

F
er

til
ity

This will display the least squares line of best fit that we would obtain from a standard linear regression
analysis. Note that we may turn off the standard error shading by setting se = F.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility)
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) + geom_point() + geom_smooth(method = 'lm', se = F)
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If we map colour to catholic, as we’ve seen, each point will colour code whether the corresponding province
is Catholic or Protestant.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility, colour = catholic)

) + geom_point()
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If we were to, in addition, add a smoothing curve or line of best fit, we would produce one for each of the two
sets of points defined by the catholic variable.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility, colour = catholic)

) + geom_point() + geom_smooth(method = 'lm', se = F)
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As can be seen, each line extends only over the range of its subset of points. However, we extend each line to
full range of value by setting fullrange to TRUE.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility, colour = catholic)

) + geom_point() + geom_smooth(method = 'lm', se = F, fullrange = T)
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It may be that we would prefer to have a single line of best fit to all the points in the scatterplot while still
keeping the points colour coded by a third variable. To do so, we need to restrict the colour = catholic
aesthetic mapping to geom_point() as in the following example. As can be seen, each line extends only over
the range of its subset of points. However, we extend each line to full range of value by setting fullrange to
TRUE.

ggplot(swiss_df,
mapping = aes(x = Examination, y = Fertility)

) + geom_point(mapping = aes(colour = catholic)) +
geom_smooth(method = 'lm', se = F, fullrange = T)
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In the above example, both geom_point and geom_smooth inherited the global aes mapping. Then,
geom_point added the additional mapping of colour = catholic.

Adding labels
We may use labels instead of, or in addition to, points in the scatterplot setting the label mapping and
using geom_text.

swiss_df %>%
ggplot(mapping = aes(x = Examination, y = Fertility, label = province, colour = catholic)

) +
geom_point(size = 0.5) +

geom_text(size = 2)
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In some cases, some labels overlap one another, and in all cases, the labels overlay the points. Using the
geom_text_repel from the the ggrepel package in place of geom_text can overcome, or at least minimize,
some of these problems.
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library(ggrepel)

swiss_df %>%
ggplot(mapping = aes(x = Examination, y = Fertility, label = province, colour = catholic)

) +
geom_point(size = 0.5) +

geom_text_repel(size = 2, segment.alpha = 0.5)
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For scatterplots with a relatively large number of points, labeling all points may lead more to clutter than to
clarity. However, if we are selective with which plots we label, then this may be very useful to draw attention
to certain points, as in the following example, where we only label those provinces where fertility rates were
very high or very low.

swiss_df %>%
mutate(extreme = ifelse(Fertility < 50 | Fertility > 90, province, '')) %>%
ggplot(mapping = aes(x = Examination, y = Fertility, label = extreme, colour = catholic)

) +
geom_point(size = 0.5) +
geom_text_repel(size = 2)
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As an alternative to geom_text or geom_text_repel, we could use geom_label or geom_label_repel.

swiss_df %>%
mutate(extreme = ifelse(Fertility < 50 | Fertility > 90, province, '')) %>%
ggplot(mapping = aes(x = Examination, y = Fertility, label = extreme, colour = catholic)

) +
geom_point(size = 0.5) +
geom_label_repel(size = 2)
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Bubbleplots
Bubbleplots are scatterplots where the size of the point is determined by the value of third variable. In the
following, we plot the percentage of professional workers against the percentage of university educated people
in different counties in the Mid West USA. We then scale the size of the point with the population.

midwest %>%
ggplot(mapping = aes(x = percollege, y = percprof, size = poptotal)
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) +
geom_point(alpha = 0.5, colour = 'steelblue')
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While any continuous variable could be mapped to size, because larger “bubbles” visually imply that the
observation to which the point corresponds is also larger in some physical sense, it is perhaps generally
advisable that size should map to a variable describing size in some sense, such as population or area, etc.

Facet plots
Facet plots allow us produce multiple related subplots, where each subplot displays some subset of the data.
As an example, in the following, we plot the barplot of survival or not by both passenger class and by the sex
of the passenger on the Titanic.

ggplot(titanic_df,
mapping = aes(x = passengerClass, fill = survived)

) + geom_bar(position = 'dodge') +
facet_wrap(~sex)
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In this case, we simply added facet_wrap(~sex) as an additional statement at the end of the plot that
produced the bar plot of survival rates by passenger class (see Page 18).

In cases where there are multiple subplots, facet_wrap will wrap the subplots. For example, in the following
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plot, we produce one scatterplot with line of bestfit for each one of 18 subjects in an experiment. This data,
available in sleepstudy.csv, was originally derived from a data set in the package lme4.

sleepstudy_df <- read_csv("data/sleepstudy.csv")

ggplot(sleepstudy_df,
mapping = aes(x = Days, y = Reaction, colour = Subject)

) + geom_point() +
geom_smooth(method = 'lm', se = F) +
facet_wrap(~Subject) +
theme_minimal() +
theme(legend.position = 'none')
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With facet_wrap, we may use nrow to specify the number of rows to use.

ggplot(sleepstudy_df,
mapping = aes(x = Days, y = Reaction, colour = Subject)

) + geom_point() +
geom_smooth(method = 'lm', se = F) +
facet_wrap(~Subject, nrow = 3) +
theme_minimal() +
theme(legend.position = 'none')
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We may facet by two, or more, discrete variables simultaneously using facet_grid, which will produce a
grid with columns signifying values of one the faceting variables and the rows signifying the other. In the
following example, we show histograms of weight for males and females who are either young (defined as
below the median age) or not, and in one of two different racial categories.

weight_df %>%
filter(race %in% c(1, 2)) %>%
mutate(young = age < median(age),

race = as.factor(race)) %>%
ggplot(mapping = aes(x = weight, fill = gender)) +
geom_histogram(binwidth = 10, colour = 'white', position = 'dodge', alpha = 0.75) +
facet_grid(young ~ race, labeller = label_both) +
theme(legend.position = 'bottom')
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