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Introduction
When being introduced initially, R is often described as a programming language. This statement is technically
correct, and practically very important too, but it is somewhat misleading too and so ought to be put in
context. While R does have all the major programming features that we expect in any programming language
— functions, conditionals, iterations, etc — and these are the reasons for R’s power and extensibility, whenever
we use R, especially at the beginning, we are not necessarily programming in the sense as we would be if we
were using C/C++, Java, etc. Certainly, whenever we use R, we are writing code whenever and we usually
put this code in scripts, which can then be executed as a batch. However, writing loops, functions, custom R
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objects classes, etc., is often not done until users reach a certain level of proficiency and confidence. In fact
one could use R productively without engaging in programming of this kind at all. This point is meant to
reassure newcomers to R that learning to use R productively does not require the same considerable initial
investment that might be required when learning general purpose programming languages. We can start
with learning individual R commands, build up a repertoire of widely used commands, and eventually after a
certain level of familiarity and confidence has been achieved, we can start learning how to program in R.

In this chapter, we aim to provide an introduction to some of the major programming features of R. We’ll
begin with functions both because they can be very simple to use and because of the major role functions
play in programming in R generally. We will then consider conditionals, which allow us to execute different
blocks of code depending on whether certain conditions are true. We will then consider iterations, also known
as loops. This will lead on to functionals, which can often take the place of traditional loops in R. As part of
our consideration of functionals, we will also consider the purrr package that is part of the tidyverse. The
aim of purrr is to make functionals easier and more efficient to use.

There is more to programming in R than what we cover here. For example, object oriented programming
and non-standard evaluation are both practically very important features of R programming. To keep our
coverage brief and introductory, we will not cover either here, but highly recommend the book by Wickham
(2019) for coverage of these and other R programming topics.

Functions
Functions in R, just like in any other programming language, allow us to create custom commands to perform
specific calculations or carry out specific tasks. Whenever we find ourselves repeatedly using identical or
similar code statements, we can create a function to execute this code. In R, functions usually, but not
necessarily, take some R objects as input and always returns a new object (though this could be the NULL
object, which signifies the absence of a defined value). We can use functions to carry out any calculations or
any procedure that we could perform using any other R code.

Let’s start with a numerical calculation. Let’s say we have a vector of probabilities, and we want to calculate
the logarithm, to a specified base, of the odds of these probabilities. In other words, let’s say we have a vector
of probabilities

p1, p2 . . . pn

and we want to calculate
logb

(
pi

1− pi

)
for i ∈ 1 . . . n.

This calculation is simple to perform using R. For example, let’s say our probabilities are as follows.

p <- c(0.1, 0.25, 0.5, 0.75)

Then, the logarithm, to base 2, of the odds of the values in p are calculated as follows.

log(p/(1-p), base = 2)
#> [1] -3.169925 -1.584963 0.000000 1.584963

If, on the other hand, we wanted to logarithm to base 3 or base 5 of these odds, we could do the following.

log(p/(1-p), base = 3)
#> [1] -2 -1 0 1
log(p/(1-p), base = 5)
#> [1] -1.3652124 -0.6826062 0.0000000 0.6826062

Likewise, if we had the another vector of probabilities we could calculate the log to base 2 of their odds of
these values as follows.

q <- c(0.33, 0.67, 0.99)
log(q/(1-q), base = 2)
#> [1] -1.021695 1.021695 6.629357
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Clearly, in these examples, we are repeating the same or similar code statements. In general, we should avoid
doing this. Not only is it tedious to repeatedly type the same code, but every time we do so, we introduce
the possibility, however small, of a coding error. We can therefore create a function that takes any vector of
probabilities and returns the logarithm of their odds to any desired base. We can define this function as
follows:

log_odds <- function(p, b){
log(p/(1-p), base = b)

}

To understand what is being defined here, first note that all functions in R are defined by the function
keyword. The variable names within the brackets after the function statement are the function’s so-called
input arguments. In this case, we have two arguments, named p and b. If the function takes no input, then
we’d simply write function() here. The code within the {} is known the function’s body. This is otherwise
normal R code, but as we will see, it is running in an informationally encapsulated environment. In this
example, this code is operating on two variables, p and b, and these variables are what are we will supply
as inputs whenever we call the function. The value that this code in the body calculates is then what the
function returns. In general, as we will discuss below, the value of the last expression in the function’s body
is the value that it returns. In this case, there is obviously just one expression in the body, and the value of
this expression is what is returned. In order to use a function in R, we usually (though not necessarily, as we
will see) assign it to some name using the usual assignment operator. In this case, we assign the function to
the name log_odds. We can now call this function to the run the statements above as follows.

log_odds(p, 2)
#> [1] -3.169925 -1.584963 0.000000 1.584963
log_odds(p, 3)
#> [1] -2 -1 0 1
log_odds(p, 5)
#> [1] -1.3652124 -0.6826062 0.0000000 0.6826062
log_odds(q, 2)
#> [1] -1.021695 1.021695 6.629357

Note that although the body of the log_odds function lies within the {} curly braces, when a function’s body
contains just a single expression, we may omit the braces. For example, we could write log_odds as follows.

log_odds <- function(p, b) log(p/(1-p), base = b)

The curly braces can always be used, no matter how simple the function, but in particularly simple cases, it
is not uncommon for them to be omitted.

Input arguments
Notice that in the function definition, we stated that it takes two input arguments p and b, and that the
code in the body explicitly operates on p and b. As the above examples make clear, the names we use for the
input argument in the function definition are arbitrary and do not have to correspond to the names of the
variables that we use when we call the function. By default, whatever variable is passed in first is what the
function internally defines as p and the second variable is what is defines as b. For example, consider the
following code.

probs <- c(0.25, 0.75, 0.9)
log_base <- 2
log_odds(probs, log_base)
#> [1] -1.584963 1.584963 3.169925

The function log_odds takes the vector probs and the number log_base and internally refers to them as p
and b, respectively, and then calculates and returns log(p/(1-p), base = b). As we see in the following
code, we may also explicitly indicate which variables are mapped to p and b.
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log_odds(p=probs, b=log_base)
#> [1] -1.584963 1.584963 3.169925

When using explicit assignment like this, the order of the arguments no longer matters. Thus, we can write
the above code as follows.

log_odds(b=log_base, p=probs)
#> [1] -1.584963 1.584963 3.169925

Default values for arguments

In the function we defined above, we had to explicitly provide both the probabilities and the base of the
logarithms as input arguments. In some cases, however, we may prefer to allow some input arguments to
take default values. For example, in this case, we may prefer the base of the logarithms to be 10 by default.
We define default values in the function definition, as in the following example.

log_odds2 <- function(p, b=10){
log(p/(1-p), base = b)

}

We can use this function exactly as we did with the original version, i.e. by providing two input arguments
explicitly, as in the following examples.

log_odds2(probs, log_base)
#> [1] -1.584963 1.584963 3.169925
log_odds2(b = 3, p = probs)
#> [1] -1 1 2

However, if we do not include the b argument explicitly, then it will default to b=10, as in the following
example.

log_odds2(probs) # here b=10
#> [1] -0.4771213 0.4771213 0.9542425

Optional arguments

A function can also have an optional arguments indicated by ... in the arguments list in the function
definition. This is often to pass arguments to functions that are called within functions. Consider the
following function that calculates a polynomial function.

f_poly <- function(x, y, s, t){
x^s + y^t

}

Let’s say that we want to create a function that returns the logarithm to some specified base of f_poly for
any given values of x, y, s, and t. We could do the following.

log_f_poly <- function(b=2, x, y, s, t){
log(f_poly(x, y, s, t), base = b)

}

However, an easier option would be the following.

log_f_poly <- function(..., b=2){
log(f_poly(...), base = b)

}

This will capture all the arguments, other than b, in the call of log_f_poly and pass them to f_poly. We
can see this in action in the following example.

x <- c(0.5, 1.0)
y <- c(1.0, 2.0)
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s <- 2
t <- 3
log_f_poly(x, y, s, t, b=2)
#> [1] 0.3219281 3.1699250

Note that we may obtain the optional arguments as a list given by ... by using list(...) in the code
body, as in the following trivial example function, where we return the optional argument list.

f <- function(...){
list(...)

}
f(x=1, y=2, z=3)
#> $x
#> [1] 1
#>
#> $y
#> [1] 2
#>
#> $z
#> [1] 3

By using list(...), we can always extract and operate upon all the information provided by optional
arguments.

Missing arguments

Consider the following simple function.

add_xy <- function(x, y, z){
x + y

}

The function definition states that there will be three input arguments, x, y, and z. However, in this case, it
can be used without error if we only supply x and y because z is not used in the code body.

add_xy(5, 8)
#> [1] 13

In this case, we say that the z, which is explicitly stated as an input argument, is a missing argument. Clearly,
missing arguments will not necessarily raise an error but we can always test whether any given argument is
missing by using the missing function within the code body. In the following function, we test whether each
of the three input arguments are missing or not.

is_missing_xyz <- function(x, y, z){
c(missing(x),
missing(y),
missing(z))

}

is_missing_xyz(1, 2)
#> [1] FALSE FALSE TRUE
is_missing_xyz(z = 1, y = 42)
#> [1] TRUE FALSE FALSE
is_missing_xyz(5, 4, 3)
#> [1] FALSE FALSE FALSE

As we will see in examples later throughout this book, the ability to test for missing inputs provides additional
flexibility in how we can use functions.
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Function return values
The functions we have defined thus far have had single expressions in their bodies. The values of these
expressions are what are returned by the functions. Functions, however, can have arbitrarily many statements
and expressions in their body. When there are multiple statements, the value of the last expression is the
value that is returned. To illustrate this, we can make a multi-statement version of log_odds2 as follows.

log_odds3 <- function(p, b=10){
odds <- p / (1 - p)
log(odds, base=b)

}
log_odds3(probs)
#> [1] -0.4771213 0.4771213 0.9542425

A variant of the function log_odds3 is the following.

log_odds4 <- function(p, b=10){
odds <- p / (1 - p)
log_of_odds <- log(odds, base=b)
log_of_odds

}
log_odds4(probs)
#> [1] -0.4771213 0.4771213 0.9542425

In both log_odds3 and log_odds4, there are multiple code statements in their bodies. In both cases, the
value returned is the value of the final expression in the body. It is also possible to have an explicit return
statement in the function’s code body.

log_odds5 <- function(p, b=10){
odds <- p / (1 - p)
log_of_odds <- log(odds, base=b)
return(log_of_odds)

}
log_odds5(probs)
#> [1] -0.4771213 0.4771213 0.9542425

If a return statement is used, whenever it is reached, the function will immediately return its value and the
remainder of the code in the body, if any, is not executed. In other words, the return statement allows us to
break out of a function early, which is a useful feature that we will see below after we consider conditionals. It
is conventional in R to only use explicit return statements for this break out purpose, and to normally just
use the final expression in the body as the function’s returned value.

Function scope and environment
Consider the following function.

assign_x <- function(){
x <- 17
x

}

This function will takes nothing as input, and in the body assigns the value of 17 to the variable x and then
returns this value. We can use it as follows.

x <- 42
assign_x() # returns 17
#> [1] 17
x # but x is still 42
#> [1] 42
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We see that the original value of x remains unchanged despite the fact that we have the statement x <-
17 within the function’s body. This is because the variable the x within the function’s body is a local
variable, or rather it is a variable defined within a local environment belonging to the function. Variables
in the local environment are not visible outside of that environment, which in all the examples thus far is
the global environment, which is the top level environment in the R session. In this sense, any function is
informationally encapsulated: the variables defined by normal assignment operations within the function’s
local environment do not exist outside of the function, nor do normal assignment operations within the
function’s local environment affect variables outside the function. Here is another example of this phenomenon.

assign_x2 <- function(x){
x[2] <- 42
x

}

x <- c(2, 4, 8)

# The `x` within `assign_x2` is changed
assign_x2(x)
#> [1] 2 42 8
# The `x` in the global environment is unchanged
x
#> [1] 2 4 8

Although variables in the local environment are not visible or usable in the global environment, the opposite
is not true. Variables in the global environment can be used in the local environment. Consider the following
example.

increment_x <- function(){
x + 1

}

x <- 42
increment_x()
#> [1] 43

The body of increment_x refers to a variable x that is not defined in the body, nor is it passed in as an
input argument. When this happens, R looks for x outside the local environment. In the example above, it
finds it in the global environment with the value of 42. It then increments that value by 1 and returns the
result. Even in this case, however, the value of x in the global environment remains unchanged.

x <- 101
increment_x()
#> [1] 102
x
#> [1] 101

Thus far, we have mentioned a function’s local environment and contrasted this with the global environment.
However, functions may be nested. In that case, we have can multiple levels of environments. Consider the
following example.

f <- function(){

x <- 1

g <- function(){
x + 1

}
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h <- function(){
y + 2

}

c(g(), h())
}

In this example, the functions g and h have their own local environment, but these environments are within
the local environment of the function f, which is within the global environment. In this case, we say that the
environment of f is the parent environment of g and h, and the global environment is the parent environment
of f. This nesting of environments determines how values of variables are looked up. For example, when g is
called it looks for x, which does not exist in its local environment, so it looks for it in its parent environment,
which is the local environment of f. When h is called, it looks for y, which exists neither within its own local
environment, or within its parent environment, so it must look for it in the global environment, which is its
grandparent environment (the parent environment of its parent environment). We can see this function in
action in the following example.

y <- 42
f()
#> [1] 2 44

An important feature of function environments is that they are defined by where the function is defined not
where it is called. This becomes important when a function is returned by another function. Consider the
following example.

f <- function(){
y <- 42

function(x){
x + y

}

}

g <- f()

In this example, g, which is the output of the call of f, is a function whose parent environment is the
environment of f. As such, we can do the following.

y <- 21
g(17)
#> [1] 59

Note that the result here is 17 + 42 and not 17 + 21. The g function is defined as function(x) x + y,
and so it must look to its parent’s, or grandparent’s and so on, environment to find the value of y. Although
y takes the value of 21 in the global scope, it takes the value of 42 in the environment of f, which is g’s
parent environment.

Finally, although we mentioned that normal assignments within a local environment do not affect values in
the parent, or other ancestor, environments, the special assignment operator <<- can be used to assign value
in the parent environment. As a simple example, consider the following.

f <- function(){
x <<- 42

}

x <- 17
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f()
x
#> [1] 42

In this case, we see that the assignment of the value of 42 to y has been applied to the parent environment of
f, which is the global environment.

Anonymous functions
In all the functions above, the functions were assigned to some name. This is not necessary. Consider the
following example.

f <- function(x, g){
g(sum(x))

}

Here, f takes an object x and a function g and calls g(sum(x)) and returns the result. We can pass in any
existing R function we wish as the value of g, as in the following examples.

x <- c(0.1, 1.1, 2.7)
f(x, log10)
#> [1] 0.5910646
f(x, sqrt)
#> [1] 1.974842
f(x, tanh)
#> [1] 0.9991809

Of course, we can also pass in any function we have defined ourselves.

square <- function(x) x^2
f(x, square)
#> [1] 15.21

However, we don’t have to assign a name to our custom function and pass in that name. We can instead just
pass in the unnamed, or anonymous, function itself as in the following examples.

f(x, function(x) x^2)
#> [1] 15.21
f(x, function(x) log(x^2))
#> [1] 2.721953

Anonymous functions are widely used in R, as we will see when we discuss functionals later in this chapter.

We can create a self executing anonymous function as in the following example.

y <- (function(x, y, z){x + y + z})(1, 2, 3)
y
#> [1] 6

Here, a function is created and called immediately and the result assigned to y. Given that a function
like this can only be invoked once, it may seem pointless. However, it does allow us to write code in an
informationally encapsulated environment, where we can possibly re-use variable names from the parent or
global environment, and not interfere with variables or add clutter to those environments.

Conditionals
Conditionals allows us to execute some code based on whether some condition is true or not. Consider the
following simple example.
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library(tidyverse)

# Make a data frame
data_df <- tibble(x = rnorm(10),

y = rnorm(10))

write_data <- TRUE

if (write_data) {
write_csv(data_df, 'tmp_data.csv')

}

Here, we write data_df to a .csv file if and only if write_data is true. The conditional statement begins
with the keyword if followed by a round bracketed expression that must contain an expression that evaluates
to TRUE or FALSE. This is then followed by a code block delimited by { and }. Everything in this code
block is executed if and only if the expression is true. Note that if the code block contains only a single
expression, just as in the case of the code body of functions, the curly braces surrounding the code block in
the conditional can be omitted, as in the following example.

if (write_data) write_csv(data_df, 'tmp_data.csv')

if . . . else statments
The conditional statements in the examples so far will execute some code if a condition is true, and do nothing
otherwise. Sometimes, however, we want to execute one code block if the condition is true and execute an
alternative code block if it is false. To do this, we use an if . . . else statement, as in the following example.

use_new_data <- TRUE

if (use_new_data){
data_df <- read_csv('data_new.csv')

} else {
data_df <- read_csv('data_old.csv')

}

As we can see, if use_new_data is true, we read in the data from data_new.csv, and otherwise we read the
data in from data_old.csv.

Nesting if and if . . . else statements
We may nest if and if . . . else statements. In other words, we may evaluate one condition, and if it is true,
we may evaluate another condition, and so on. In the following example, if data_1.csv exists, we will read
in its data. If it does not exist, then we test if data_2.csv exists. If it does, we read in its data. If not, we
read in the data from data_3.csv.

if (file.exists('data_1.csv')) {
data_df <- read_csv('data_1.csv')

} else if (file.exists('data_2.csv')) {
data_df <- read_csv('data_2.csv')

} else {
data_df <- read_csv('data_3.csv')

}

It should be noted that this example may not seem like nesting of if . . . else statements, but rather like a
chaining of these statements. However, it is exactly equivalent to the following, clearly nested, if . . . else
statements.
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if (file.exists('data_1.csv')) {
data_df <- read_csv('data_1.csv')

} else {
if (file.exists('data_2.csv')) {

data_df <- read_csv('data_2.csv')
} else {
data_df <- read_csv('data_3.csv')

}
}

The only difference between these two versions is that the first version omits the (in this case, optional) {}
after the first occurrence of else. As such, whether we see conditional statements like the first version as a
chaining or a nesting is not meaningful.

Ultimately, nested (or chained) if and if . . . else statements allow us to evaluate any binary decision tree.
See Figure 1 for some examples.

Nested if and if . . . else statements can be used when we must choose between K > 2 different options. In
the following example, we sample n = 10 random data points from one of 5 different distributions.

n <- 10
distribution <- 'student_t'

if (distribution == 'normal') {
y <- rnorm(n, mean = 100, sd = 15)

} else if (distribution == 'log_normal') {
y <- log(rnorm(n, mean = 100, sd = 15))

} else if (distribution == 'student_t') {
y <- rt(n, df = 10)

} else if (distribution == 'chisq') {
y <- rchisq(n, df = 3)

} else if (distribution == 'uniform'){
y <- runif(n, min = -10, 10)

}

switch functions
While, as we’ve just seen, it is possible to evaluate a non-binary decisions using nested if and if . . . else
statements, sometimes it may be natural and simpler to use a switch function, which executes different
expressions or code blocks depending on the value of a variable. As an example, we can re-implement the
previous example of random number generation using a switch function.

distribution <- 'chisq'

y <- switch (distribution,
normal = rnorm(n, mean = 100, sd = 15),
log_normal = log(rnorm(n, mean = 100, sd = 15)),
student_t = rt(n, df = 10),
chisq = rchisq(n, df = 3),
uniform = runif(n, min = -10, 10)

)

In this example, the switch function’s first argument is the name of a variable that takes one of five different
values, namely normal, log_normal, student_t, chisq, or uniform. Based on which value is matched, it
executes the code that corresponds to that value. In this example, the value of distribution is chisq and
so the rchisq(n, df = 3) code is executed.
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<expr 1>

<code 1>

TR
UE

<expr 2>

<code 2>

TR
UE

<code 3>

FALSE

FALSE

if (<expr 1>) {
<code 1>

} else if (<expr 2>) {
<code 2>

} else {
<code 3>

}

<expr 1>

<code 1>

TR
UE

<expr 2>

<code 2>

TR
UE

<expr 3>

<code 3>

TR
UE

<code 4>

FALSE

FALSE

FALSE

if (<expr 1>) {
<code 1>

} else if (<expr 2>) {
<code 2>

} else if (<expr 3>) {
<code 3>

} else {
<code 4>

}

<expr 1>

<expr 2>

<code 1>

TR
UE

<code 2>

FALSE

TR
UE

<expr 3>

<code 3>

TR
UE

<code 4>

FALSE

FALSE

if (<expr 1>) {
if (<expr 2>) {
<code 1>

} else {
<code 2>

}
} else if (<expr 3>) {

<code 3>
} else {

<code 4>
}

Figure 1: Using nested if or if ... else statements, we can create any binary decision tree where each terminal
node, or leaf, of the tree is a code block and every nonterminal node is an logical expression that evaluates to
true or false.
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The switch function can also be used by choosing the code based on an index rather than by matching a name.
In the following example, we choose the second of the five listed options by setting distribution <- 2.

distribution <- 2

y <- switch (distribution,
rnorm(n, mean = 100, sd = 15),
log(rnorm(n, mean = 100, sd = 15)),
rt(n, df = 10),
rchisq(n, df = 3),
runif(n, min = -10, 10)

)

In the above examples, the code that is executed is always a simple expression. However, it is possible to
have an arbitrary code block instead, as in the following example.

distribution <- 'normal'

switch (distribution,
'normal' = {

mu <- runif(1, min=-10, max=10)
sigma <- runif(1, min=0.01, max = 10)
y <- rnorm(n, mean = mu, sd = sigma)

},
'student_t' = {

mu <- runif(1, min=10, max=20)
sigma <- runif(1, min=1.01, max = 3)
y <- mu + rt(n, df=1) * sigma

}
)

In this case, the entire code block corresponding to matched name of distribution is executed in the global
namespace.

ifelse, if_else, and case_when

If the code being executed by an if . . . else statement is simple, such as a single expression, and optionally if
we need to have the conditional vectorized, then we can use a ifelse function. In the following example, for
each value of reaction_time, if it is less than 300, we return 'fast' and otherwise, we return 'slow'.

reaction_time <- c(1000, 300, 200, 250, 450, 300, 250, NA)
ifelse(reaction_time < 300, 'fast', 'slow')
#> [1] "slow" "slow" "fast" "fast" "slow" "slow" "fast" NA

As can be seen, we obtain a vector of the same length as reaction with values 'fast' and 'slow'.

The same functionality of ifelse can be obtained with the if_else function in dplyr.

library(dplyr)
if_else(reaction_time < 300, 'fast', 'slow')
#> [1] "slow" "slow" "fast" "fast" "slow" "slow" "fast" NA

The if_else is identical to ifelse but it requires that the expressions corresponding to the true and false
values of the logical condition are of the same type. In addition, if_else provides us the option of replacing
missing values with values of our choice.

The dplyr packages also provides the case_when function that can be seen as a vectorized version of nested
if . . . else statements. It is primarily intended to be used as part of dplyr pipelines, especially within mutate
functions, and we also described it in Chapter 3. As an example, we can use case_when to create a nonlinear
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Figure 2: The ternary sawtooth map. This nonlinear function can be easily implemented using a case_when
function.

function known as the ternary sawtooth map, which is depicted in Figure 2. First, consider how we could
implement this function using nested if . . . else statements.

sawtooth <- function(x){
if (x < 0){
0

} else if (x < 1/3) {
3 * x

} else if (x < 2/3) {
3 * x - 1

} else if (x <= 1) {
3 * x - 2

} else {
0

}
}

Using case_when, this function could be reimplemented as follows.

sawtooth2 <- function(x){
case_when(
x < 0 ~ 0,
x < 1/3 ~ 3 * x,
x < 2/3 ~ 3 * x - 1,
x <= 1 ~ 3 * x - 2,
TRUE ~ 0

)
}

Each line within case_when (or more precisely, each comma delimited argument), contains a formula, which
is a statement with a ~. To the left of ~ is a logical expression, and to the right is the code that is executed if
the logical expression is true. Sometimes more than one logical expression within case_when is true. That is
the case here. For example, if x < 0 is true, then x < 1/3 must be true too, and so on. The case_when
function proceeds through the logical expressions in order and executes the code corresponding to the first
expression that is true and then stops. This means that the order of the expressions is vital to how case_when
works. Note that the final statement in the example above is TRUE ~ 0. This plays the role equivalent to
else in an if ... else statement. Because the expression to left of ~ obviously is always true, the code
the right will be executed if and only if all other expressions are false.
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The case_when function is more compact than nested if . . . else statements. More usefully, it is vectorized.
In other words, the sawtooth function, which uses nested if . . . else statements, will not work properly if the
input argument is a vector rather than a single value (which is, strictly speaking, a vector of length 1). By
contrast, sawtooth2, which uses case_when will work will a vector input, as in the following example.

x <- c(0.1, 0.3, 0.5, 0.6, 0.7, 0.9)
sawtooth2(x)
#> [1] 0.3 0.9 0.5 0.8 0.1 0.7

Iterations
In R, there are two types of iterations or loops, which we informally refer to as for loops and while loops.

for loops
In order to understand for loops, let us re-use the sawtooth function above. We mentioned that this function
can not be applied to vectors but only to single values. Let’s say we had the following vector of 1000 elements
to which we wished to apply the sawtooth function.

N <- 1000
x <- seq(-0.1, 1.1, length.out = N)

In principle, we could apply sawtooth to each element of x, one element at a time, as follows.

# Create a vector of 0's of same length as x
# This can also be done with `y <- vector('double', N)`
y <- numeric(N)

y[1] <- sawtooth(x[1])
y[2] <- sawtooth(x[2])
y[3] <- sawtooth(x[3])
...
y[N] <- sawtooth(x[N]) # where N = 1000

It should be obvious that we want to avoid this at all costs. Instead, we can create a for loop as follows.

for (i in 1:N) {
y[i] <- sawtooth(x[i])

}

Essentially, this loop repeatedly executes the statement y[i] <- sawtooth(x[i]). On the first iteration, i
takes the value of 1. On the second iteration, i takes the value of 2, and so on, until the final iteration where
i takes the values of N. In other words, for each value of i from 1 to N, we execute y[i] <- sawtooth(x[i]).
This is exactly equivalent to doing the following.

y[1] <- sawtooth(x[1])
y[2] <- sawtooth(x[2])
y[3] <- sawtooth(x[3])
...
y[N] <- sawtooth(x[N]) # where N = 1000

The general form of a for loop is as follows.

for (<var> in <sequence>) {
<code body>

}

The for loop iteration begins with the for keyword followed by a round bracketed expression of the form
(<var> in <sequence>) where <var> is what we’ll call the loop variable and <sequence> is (usually) a
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vector or list of items. After the round brackets is some code enclosed by {}. For each value in the <sequence>,
the <var> is set to this value and the <code body> is executed. We could write this in pseudo-code as follows.

for each value in <sequence>
set <var> equal to this value
execute <code body>

In other words, the for loop executes the <code body> for each value in <sequence>, setting <var> to this
value on each iteration.

Let’s us look at some further examples.

Example 1: In the following, we take a list of people’s names and print a greeting to them.

people <- c('bill', 'hillary', 'donald', 'george')
for (person in people){
print(paste('Hello', person))

}
#> [1] "Hello bill"
#> [1] "Hello hillary"
#> [1] "Hello donald"
#> [1] "Hello george"

In this example, we execute print(paste('Hello', person)) 4 times. On the first iteration, the value
of person takes the value of people[1], which is bill. On the second iteration, person takes the value of
people[2], which is hillary, and so on.

Example 2: The for loop in the previous example can also be implemented as follows.

for (i in seq_along(people)){
print(paste('Hello', people[i]))

}
#> [1] "Hello bill"
#> [1] "Hello hillary"
#> [1] "Hello donald"
#> [1] "Hello george"

Here, seq_along(people) gives us the sequence of integers from 1 to length(people). It is safer than doing,
for example, 1:length(people) because if people was in fact empty, 1:length(people) would return 1, 0,
while seq_along(people) would return an empty vector.

Example 3: Here, we sum all the elements in the vector values.

values <- c(51, 45, 53, 53, 46)
s <- 0
for (value in values){
s <- s + value

}
s
#> [1] 248

Example 4: Here, we create a cumulative sum vector for values.

cumulative_values <- numeric(length(values))
for (i in seq_along(values)){
if (i == 1){
cumulative_values[i] <- values[i]

}
else {
cumulative_values[i] <- cumulative_values[i - 1] + values[i]
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}
}
cumulative_values
#> [1] 51 96 149 202 248

Example 5: In this example, we implement the famous chaotic dynamical system described by May (1976).
In this, the value of the system at time t is

xt = rxt−1(1− xt−1),

where, in its chaotic regime, r takes values approximately in the range (3.5695, 4.0), and the initial value of
the system is x1 ∈ (0, 1). In this example, we set x1 = 0.5 and set r = 3.75, and iterate for 500 iterations.

N <- 500
r <- 3.75
x <- numeric(N)
x[1] <- 0.5
for (t in seq(2, N)){
x[t] <- r * x[t-1] * (1 - x[t-1])

}

The plot of x for each value of t is shown in Figure 3.
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x

Figure 3: The time series of the chaotic logistic map. This time series can be obtained using a simple for loop.

Example 6 : The following example illustrates how we can easily automate repetitive tasks, and save ourselves
from considerable amount of time other spent on dull manual work. Let’s say we have a large set of .csv
files that we need to read in as data frames and then concatenate them into one large data frame.

file_names <- c('data_1.csv',
'data_2.csv',
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'data_3.csv')
# create empty list
df_list <- vector('list', length(file_names))
# read in each file; store contents in list
for (i in seq_along(file_names)){
df_list[[i]] <- read_csv(file_names[i])

}
# bind rows
data_df <- bind_rows(df_list)

In this example, there were just 3 files to read in and concatenate, but had there been hundreds or thousands
of code, the required code would have been identical and the total running time might only be seconds or
minutes.

while loops
Unlike for loops, which iterate through each value in a sequence of values, while loops continuously execute
the code body while a condition remains true. The general form of a while loop is as follows.

while (<condition>) {
<code body>

}

Here, <condition> is a logical expression that evaluates to TRUE or FALSE. The while loop will continue to
execute <code body> as long as <condition> remains TRUE.

As a very simple example of a while loop, let’s say we wish to find the largest value of k such that 2k ≤ 106.

k <- 0
while (2^(k+1) <= 10^6) {
k <- k + 1

}
k
#> [1] 19

Here, we see that we keep incrementing k by 1 until 2ˆ(k+1) is greater than 106. At that point, the condition
2ˆ(k+1) <= 10ˆ6 is false, and the while loop terminates. The final value of k is the highest of value of k
such that 2k ≤ 106.

While loops are very powerful. Anything that can be implemented by a for loop can also be implemented
by a while loop, but the converse is not true. An an example of a while loop implementing a for loop, let’s
reimplement the summation for loop above.

values <- c(51, 45, 53, 53, 46)
i <- 1
s <- 0
while (i <= length(values)) {
s <- s + values[i]
i <- i + 1

}
s
#> [1] 248

A crucial feature of this while loop is the loop counter i, which is initialized to 1 and incremented by 1 on
each iteration. This is a common feature of while loops.

Another common pattern in while loops is a conditional with a break statement. Whenever break occurs,
the while loop terminates. Consider the following example where we again find the largest value of k such
that 2k ≤ 106.
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k <- 0
while (TRUE){

if (2^(k + 1) > 10^6){
break

}

k <- k + 1
}

k
#> [1] 19

Notice that in this case the while loop’s condition is always TRUE, and the conditional with the break statement
is doing the crucial work of terminating the loop.

An equivalent of while (TRUE) is the repeat statement.

k <- 0
repeat {

if (2^(k + 1) > 10^6){
break

}

k <- k + 1
}
k
#> [1] 19

An example of a simple but nontrivial algorithm involving a while loop is where we sample from a discrete
probability distribution. Consider the following probability distribution for a discrete random variable with 6
possible values.

p <- c(0.1, 0.2, 0.25, 0.15, 0.1, 0.2)

This tells us that the probability that the variable takes the value of 1 is 0.1, that it takes the value of 2 is
0.2, and so on. If we would like to sample from this probability distribution, we can do so using the following
algorithm involving a while loop. First, we calculate the cumulative sum of p.

f <- cumsum(p)
f
#> [1] 0.10 0.30 0.55 0.70 0.80 1.00

Then, we sample uniformly at random from the interval (0, 1), which we can do in R with runif().

r <- runif(1)

Then we begin to step through each value of f, beginning with the first value, and test if r is less than or
equal to this value. If it is, we stop. Otherwise, we move on to the next value in f.

k <- 1
while (TRUE) {

if (r <= f[k]) {
break

}

k <- k + 1
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}

This sampler could also be implemented as follows.

k <- 1
while (r > f[k]) {
k <- k + 1

}

Functionals
Functionals are functions that take a function as input and return a vector. They play an important role in
programming in R, often taking the place of for loops. There are many functionals in the base R language.
Here, we will look at the most useful or widely used ones.

lapply

One of the most widely used functionals in R is the lapply function, which takes two required arguments, a
vector or list and a function, and then applies the function to each element in the vector or list and returns a
new list. As an example, instead of using a for loop, we could use lapply to apply the sawtooth function
used above to each element of a vector x. Here’s the original for loop.

N <- 1000
x <- seq(-0.1, 1.1, length.out = N)
y <- numeric(N)
for (i in 1:N) {
y[i] <- sawtooth(x[i])

}

We can replace the preassignment of y, i.e. y <- numeric(N), and the for loop entirely using lapply as
follows.

y <- lapply(x, sawtooth)

The lapply function returns a list with as many elements as there are elements in x.

length(x)
#> [1] 1000
length(y)
#> [1] 1000
class(y)
#> [1] "list"
head(y, 3) # first three elements of y
#> [[1]]
#> [1] 0
#>
#> [[2]]
#> [1] 0
#>
#> [[3]]
#> [1] 0

Should we prefer that y be a vector rather than a list, we can unlist it.

y <- unlist(y)
head(y, 3)
#> [1] 0 0 0
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There are other options too for returning a vector from a functional, as we will see shortly.

As another application of lapply, consider the for loop example above where we read in data frames from
multiple files using read_csv and stored them in a list that was then concatenated into data_df.

file_names <- c('data_1.csv',
'data_2.csv',
'data_3.csv')

df_list <- vector('list', length(file_names))
for (i in seq_along(file_names)){
df_list[[i]] <- read_csv(file_names[i])

}
data_df <- bind_rows(df_list)

The preassignment to df_list and the for loop can be replaced with the use of lapply.

df_list <- lapply(file_names, read_csv)

The general form of the lapply function is as follows.

returned_list <- lapply(<vector or list>, <function>)

Sometimes, we may need to use a function that takes arguments in lapply. As an example, let us imagine
that we wish to calculate the trimmed mean of each vector, and also ignoring missing values, in a list of
vectors. The trimmed mean, which we described in Chapter 5, is where we compute the mean after a certain
proportion of the high and low elements have been trimmed. The trimmed mean of a vector, where we remove
5% of values on the upper and lower extremes of the vector, and also ignoring missing values, is as follows.

x <- c(10, 20, NA, 125, 35, 15)
mean(x, trim = 0.05, na.rm = T)
#> [1] 41

To use the trim = 0.05 and na.rm = T arguments when we use lapply, we supply them as optional
arguments after the function name as follows.

data_vectors <- list(x = c(NA, 10, 11, 12, 1001, -20),
y = c(5, 10, 7, 2500, 6),
z = c(2, 4, 1000, 8, 5)

)
lapply(data_vectors, mean, trim = 0.20, na.rm = T) %>%
unlist()

#> x y z
#> 11.000000 7.666667 5.666667

Note that because data frames (and tibbles) are essentially lists of vectors, lapply can be easily used to
apply a function to all columns of a data frame.

data_df <- tibble(x = rnorm(10),
y = rnorm(10),
z = rnorm(10))

lapply(data_df, mean) %>%
unlist()

#> x y z
#> 0.24504010 -0.43967492 -0.05399682

The above function accomplishes the same thing as the following summarise_all function, except that
summarize_all returns a tibble.

summarise_all(data_df, mean)
#> # A tibble: 1 x 3
#> x y z
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#> <dbl> <dbl> <dbl>
#> 1 0.245 -0.440 -0.0540

sapply and vapply

As we’ve seen, lapply always returns a list. Sometimes, this returned list is a list of single values or list of
vectors of the same length and type. In these cases, it would be preferable to convert these lists to vectors or
matrices. We saw this in the case of using sawtooth with lapply above, where we manually converted the
returned list into a vector using unlist. Variants of lapply, sapply and vapply, can facilitate doing these
conversions. The sapply function works like lapply but will attempt to simplify the list as a vector or a
matrix if possible. In the following example, we use sapply to apply sawtooth to each element of x.

N <- 1000
x <- seq(-0.1, 1.1, length.out = N)
y <- sapply(x, sawtooth)
head(y, 5)
#> [1] 0 0 0 0 0

Here, because the list that would have been returned by lapply, had we used it here, is a list of length N of
single numeric values (or numeric vectors of length 1), sapply can produce and return a numeric vector of
length N.

If the results of lapply is a list of length N of numeric vectors of length 5, for example, then this list could
be simplified to a matrix. In the following example, the list returned by lapply is a list like this.

data_df <- tibble(x = rnorm(100),
y = rnorm(100),
z = rnorm(100))

lapply(data_df, quantile)
#> $x
#> 0% 25% 50% 75% 100%
#> -2.31932737 -0.70960382 -0.05431694 0.72976278 2.13348636
#>
#> $y
#> 0% 25% 50% 75% 100%
#> -2.82300012 -0.48106048 0.04061442 0.61636766 2.13286973
#>
#> $z
#> 0% 25% 50% 75% 100%
#> -2.4662529 -0.6690109 -0.1111398 0.5306826 2.1873352

If we use sapply here instead, the result is a matrix.

sapply(data_df, quantile)
#> x y z
#> 0% -2.31932737 -2.82300012 -2.4662529
#> 25% -0.70960382 -0.48106048 -0.6690109
#> 50% -0.05431694 0.04061442 -0.1111398
#> 75% 0.72976278 0.61636766 0.5306826
#> 100% 2.13348636 2.13286973 2.1873352

In cases where the list returned by lapply has elements of different lengths, sapply can not simplify it.

X <- list(x = rnorm(2),
y = rnorm(3),
z = rnorm(4)

)
sapply(X, function(x) x^2)
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#> $x
#> [1] 0.0503656 0.1913169
#>
#> $y
#> [1] 1.7629691 0.2194715 1.7954867
#>
#> $z
#> [1] 2.7736662 0.2904671 0.9987699 0.1166150

The vapply function is a safer version of sapply because it specifies the nature of the returned values of
each application of the function. For example, we know the default returned value of quantile will be a
numeric vector of length 5. We can specify this as the FUN.VALUE argument to vapply.

vapply(data_df, quantile, FUN.VALUE=numeric(5))
#> x y z
#> 0% -2.31932737 -2.82300012 -2.4662529
#> 25% -0.70960382 -0.48106048 -0.6690109
#> 50% -0.05431694 0.04061442 -0.1111398
#> 75% 0.72976278 0.61636766 0.5306826
#> 100% 2.13348636 2.13286973 2.1873352

mapply and Map

The functionals lapply, sapply, vapply take a function and apply it to each element in a vector or list. In
other words, each element in the vector or list is supplied as the argument to the function. While we may, as
we described above, have other arguments to the function set to fixed values for each function application, we
can not use lapply, sapply or vapply to apply functions to two or more lists or vectors at the same time.
Consider the following function.

power <- function(x, k) x^k

If we had a vector of x values, and set k to e.g. 3, we could do the following.

x <- c(2, 3, 4, 5)
sapply(x, power, k=5)
#> [1] 32 243 1024 3125

However, if we had the vector of x values and a vector of k values, and which to apply each element of x and
the corresponding element of k to power, we need to use mapply, as in the following example.

x <- c(2, 3, 4, 5)
k <- c(2, 3, 2, 2)
mapply(power, x = x, k = k)
#> [1] 4 27 16 25

As we can see, for each index i of x and k, we calculate power(x[i], k[i]). This mapply is therefore
equivalent to the following for loop.

for (i in seq_along(x)){
power(x[i], k[i])

}

With mapply, we can iterate over any number of lists of input arguments simultaneously. As an example, the
random number generator rnorm function takes 3 arguments: n, mean, and sd. In the following, we apply
rnorm to each value of of lists of these three arguments.

set.seed(101)
n <- c(2, 3, 5)
mu <- c(10, 100, 200)
sigma <- c(1, 10, 10)
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mapply(rnorm, n = n, mean = mu, sd = sigma)
#> [[1]]
#> [1] 9.673964 10.552462
#>
#> [[2]]
#> [1] 93.25056 102.14359 103.10769
#>
#> [[3]]
#> [1] 211.7397 206.1879 198.8727 209.1703 197.7674

As we can see, we effectively execute rnorm(n=3, mean=10, sd=1), rnorm(n=5, mean=5, sd = 10), and
so on.

The Map function works just like mapply, with minor differences, such as not ever simplifying the results.

set.seed(101)
Map(rnorm, n = n, mean = mu, sd = sigma)
#> [[1]]
#> [1] 9.673964 10.552462
#>
#> [[2]]
#> [1] 93.25056 102.14359 103.10769
#>
#> [[3]]
#> [1] 211.7397 206.1879 198.8727 209.1703 197.7674

As we can see, Map and mapply are identical in their usage and in what they do. However, by default, mapply
will attempt to simply its output like sapply, if possible. We saw this with the use of the power function
with mapply above. However, if we replace mapply with Map, no simplification is applied, and we obtain a
list as output.

x <- c(2, 3, 4, 5)
k <- c(2, 3, 2, 2)
Map(power, x = x, k = k)
#> [[1]]
#> [1] 4
#>
#> [[2]]
#> [1] 27
#>
#> [[3]]
#> [1] 16
#>
#> [[4]]
#> [1] 25

Filter, Find, and Position

The Filter functional takes a predicate, which is a function that returns a logical value, and a vector or list
and returns those elements of the list for which the predicate is true. As an example, here we have a data
frame with three variables.

data_df <- tibble(x = rnorm(3),
y = rnorm(3),
z = c('a', 'b', 'c')

)

We can select the numeric vectors of data_df as follows.
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Filter(is.numeric, data_df)
#> # A tibble: 3 x 2
#> x y
#> <dbl> <dbl>
#> 1 0.526 -1.47
#> 2 -0.795 -0.237
#> 3 1.43 -0.193

In this example, we are doing what could otherwise be accomplished with dplyr’s select_if function.

select_if(data_df, is.numeric)
#> # A tibble: 3 x 2
#> x y
#> <dbl> <dbl>
#> 1 0.526 -1.47
#> 2 -0.795 -0.237
#> 3 1.43 -0.193

Unlike select_if, Filter can be applied to data structure other than data frames. For example, in the
following example, we select all elements of a random sample of 20 integers that are multiples of 3.

s <- sample.int(100, size=10, replace=T)
s
#> [1] 31 79 51 14 67 42 50 43 14 25
Filter(function (x) x %% 3 == 0, s)
#> [1] 51 42

The Find function searches through a vector or list to find the first element for which a predicate is true.

Find(function (x) x %% 3 == 0, s)
#> [1] 51

If the predicate is not true of any element, then NULL is returned.

Find(function (x) x < 0, s)
#> NULL

The Position function is like Find, but returns the position of the first element for which the predicate is
true.

Position(function (x) x %% 3 == 0, s)
#> [1] 3

Functionals with purrr

The purrr package in the tidyverse provides functionals like those just covered, but which have consistent
with one another in terms of how they are used, and also with how other tidyverse functions are used.
In addition, purrr provides additional functional tools beyond those in base R. We can load purrr with
library(purrr), but it is also loaded by library(tidyverse).

map

One of the main tools in purrr is map and its variants. It is very similar to lapply. It takes a list (or vector)
and a function, and applies the function to each element of the list. To re-use an example from above, in the
following, we apply read_csv to each file name in a list of file names, and collect the data frames that are
produced in a list data_df_list.

file_list <- c('data_1.csv',
'data_2.csv',

25



'data_3.csv')
data_df_list <- map(file_list, read_csv)

As with lapply, we can supply arguments for the function being applied as optional arguments. For example,
if we wanted to read in the data files as in the previous example, but just read no more than 100 rows of
data, supply the n_max argument to read_csv as follows.

data_df_list <- map(file_list, read_csv, n_max=100)

The map function have _if and _at variants, which function similarly to the _if and _at variants of the
dplyr verbs we met earlier. For example, if we want to apply read_csv only if the name of the data file is
not data_2.csv, we can use map_if as follows.

data_df_list <- map_if(file_list,
function(x) x != 'data_2.csv',
read_csv)

We could accomplish the same thing by using map_at, which can take positional arguments, or negative
positions, to include or exclude elements of a list. For example, if we use -2 as the second argument to
map_at it will skip the second item in file_list.

data_df_list <- map_at(file_list,
-2,
read_csv)

When the list that is returned by map or its variants can be simplified to a vector, we can use the map_dbl,
map_int, map_lgl, map_chr variants of map to simplify the list to a vector of doubles, integers, Booleans, or
characters, respectively. In the following example, we apply functions that produce integers, logicals, doubles,
or characters, to each column of a data frame.

data_df <- read_csv('data_1.csv')

map_int(data_df, length)
#> x y z
#> 1000 1000 1000
map_lgl(data_df, is_integer)
#> x y z
#> FALSE FALSE FALSE
map_dbl(data_df, mean)
#> x y z
#> -0.0259532006 0.0643665838 -0.0009872201
map_chr(data_df, class)
#> x y z
#> "numeric" "numeric" "numeric"

There is also a map_df that can be used when the list contains data frames that can be concatenated together.
For example, to read in all three data frames and concatenate them we can do the following.

data_df_all <- map_df(file_list, read_csv)

What is accomplished with map_df here is exactly what would be obtained by a combination of map and
dplyr’s bind_rows.

data_df_all_2 <- map(file_list, read_csv) %>%
bind_rows()

all_equal(data_df_all, data_df_all_2)
#> [1] TRUE

The use of map_df in the above example is exactly equivalent to using map_dfr, which forces the creation of
the data frame by row binding.

26



data_df_all_3 <- map_dfr(file_list, read_csv)
all_equal(data_df_all, data_df_all_3)
#> [1] TRUE

On the other hand, if we wanted to create a data frame by column binding, we could use map_dfc. It is
possible to do this with the data frames in the previous examples because they all have equal numbers of
rows.

data_df_all_4 <- map_dfc(file_list, read_csv)

The resulting data frame data_df_all_4 is of the following dimensions.

dim(data_df_all_4)
#> [1] 1000 9

Its column names are as follows.

names(data_df_all_4)
#> [1] "x...1" "y...2" "z...3" "x...4" "y...5" "z...6" "x...7" "y...8" "z...9"

purrr style anonymous functions
We saw above that we can use anonymous functions in lapply, sapply, etc., functionals. This can be done
in purrr functionals like the map family too, as we see in the following example.

map_dbl(data_df,
function(x) mean(log(abs(x)))

)
#> x y z
#> -0.6400092 -0.5868030 -0.5765645

However, purrr provides syntactic sugar to allow us to rewrite this as follows.

map_dbl(data_df,
~ mean(log(abs(.)))

)
#> x y z
#> -0.6400092 -0.5868030 -0.5765645

In other words, in place of the function(x), we have ~, and in place of the anonymous function’s input
variable we have ..

map2 and pmap

When we have two or more than two sets of input arguments, we can use map2 and pmap, respectively. Both
of these functions also have the _lgl, _int, _dbl, _chr, _df, _dfr, _dfc variants that we saw with map.

As an example of a map2 function, we’ll use the power function that two input arguments.

x <- c(2, 3, 4, 5)
k <- c(2, 3, 2, 2)
map2_dbl(x, k, power)
#> [1] 4 27 16 25

As an example of a pmap function, we can reimplement the rnorm based sampler that we originally wrote
with mapply. The first argument to pmap is a list whose length is the number of arguments being passed to
the function. If want to iterate over different values of the n, mean and sd arguments for rnorm, as we did in
the example above, we’d set up a list like the following.
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args <- list(n = c(2, 3, 5),
mean = c(10, 100, 200),
sd = c(1, 10, 10))

We then use pmap as follows.

pmap(args, rnorm)
#> [[1]]
#> [1] 8.734939 9.313147
#>
#> [[2]]
#> [1] 95.54338 112.24082 103.59814
#>
#> [[3]]
#> [1] 204.0077 201.1068 194.4416 217.8691 204.9785

walk

The walk function in purrr is like map but is used with functions that are called just for their side effects.
Put informally, a side effect of a function is an effect performed by a function other than its return value.
A very common side effect of a function is writing something to a file. For example, while the write_csv
function does return a value, it is simply the value of name of the file it is written. The real action done by
write_csv is in its side effect. Like map, walk has has variants walk2 and pwalk that are exactly analogous
to map2 and pmap.

As an example, let us perform the inverse of map(file_list, read_csv) in the following code, which takes
a list of .csv files, reads in their data as data frames, and then stores them in the list data_df_list.

file_list <- c('data_1.csv',
'data_2.csv',
'data_3.csv')

data_df_list <- map(file_list, read_csv)

The inverse should take each element in the list and write it back to the appropriately named file. For these,
we can use walk2, which will iterate over the data frames in the list and the names in file_list.

walk2(data_df_list, file_list, write_csv)

keep and discard

The purrr package also provides us with workalike to base R’s Filter. For example, if we want to select out
elements of a list or vector for which some predicate is true, we can use keep. To select those elements for
which the predicate is not true, we can use discard. As an example, here we select out the even numbers in
a seq of integers from 1 to 20.

keep(seq(20), ~ . %% 2 == 0)
#> [1] 2 4 6 8 10 12 14 16 18 20

To select the odds numbers, which are obviously not the even numbers, we can use discard as follows.

discard(seq(20), ~ . %% 2 == 0)
#> [1] 1 3 5 7 9 11 13 15 17 19
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