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Introduction
Normal linear models play a foundational role in statistical modelling. In a sense, they can be seen as the
backbone of most statistical modelling techniques. In themselves, they comprise such well known and widely
used models as simple and multiple linear regression, t-tests, Anova, Ancova, and related models, all of
which we will cover in this chapter. They are the basis of all the classical and traditional approaches to path
analysis, structural equation models, and factor analysis (see Chapter 14). They can be extended in relatively
simple ways to lead to the generalized linear models that include the logistic regression models for categorical
data, or the count models such as Poisson or negative binomial regression (see Chapter 10 and Chapter 11).
Their standard form may be generalized further to lead to the multilevel, also known as the hierarchical or
mixed effects, linear models (see Chapter 12). Even the nonlinear models are often based on linear models,
being linear combinations of nonlinear basis functions (see Chapter 13).

The univariate normal linear model
In this chapter, we will deal exclusively with univariate normal linear models. In these models, we assume we
have n independent observations, that can be represented as n pairs as follows.

(y1, ~x1), (y2, ~x2) . . . (yi, ~xi) . . . (yn, ~xn).

In each observation, the yi is the observed value of a univariate outcome variable. As we will see, the outcome
variable is that which we are hoping to predict or explain or understand with the probabilistic model. On the
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other hand, the ~xi = [x1i, x2i . . . xki . . . xKi] are a set of K values that are used in the model to predict or
explain each value yi. Thus, each ~xi are the observed values of a set of K predictor or explanatory variables.
There is no upper bound to the number K of predictor variables we have. In terms of a lower bound, K can
be 0, in fact, and this is important special case that often arises.

The normal linear model of this data is as follows.

yi ∼ N(µi, σ2), µi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

Here, N(µi, σ2) denotes a univariate normal distribution with mean µi and variance σ2. In other words, the
normal linear model assumes that each observed value yi is a sample from a normal distribution whose mean
is µi, and whose standard deviation is σ, and the value of µi is a deterministic linear function of the values of
the K predictor variables.

It is important to see that this model is a probabilistic model of y1 . . . yn. Specifically, it is a model of
the probability of y1 . . . yn conditional on ~x1 . . . ~xn, ~β = β0, β1 . . . βK , and σ. Furthermore, it factors this
probability distribution into a set of n independent probability distributions. This can be written more
formally as follows.

P(y1 . . . yn|~x1 . . . ~xn, β, σ
2) =

n∏
i=1

P(yi|~xi, ~β, σ2) =
n∏
i=1

N(yi|β0 +
∑K
k βkxki, σ

2).

Here, P(yi|~xi, ~β, σ2) is the probability distribution for yi, which is N(yi|β0 +
∑K
k βkxki, σ

2), which is a normal
distribution with mean β0 +

∑K
k βkxki and standard deviation of σ.

Although we have observed y1, y2 . . . yn and ~x1, ~x2 . . . ~xn, we do not know the values of ~β = β0, β1 . . . βK or
σ, and so these must be inferred on the basis of the observed data. This can be done using classical or
frequentist techniques or with Bayesian methods. We will consider both approaches in this chapter.

Having inferred the unknown variables, we then have a model of how the probability distribution of the
outcome variable varies with changes of any or all of the predictor variables. Amongst other things, this allows
us to predict values of the outcome variable for any possible combination of values of the predictor variables.
It also allows us to see how the probability distribution of the outcome variables varies with changes in any of
the predictor variables assuming all other variables are held constant. This is a particularly powerful feature
of regression models generally as it allows us to identify spurious correlations between predictors and the
outcome variable.

As an example, let us consider a simple problem that we can analyse using a normal linear model. For this,
we will use the weight_df data set that we already explored.

weight_df <- read_csv("data/weight.csv")

To simplify matters somewhat, we will initially just use data from males.

weight_male_df <- weight_df %>%
filter(gender == 'male')

Let’s say that our interest lies in understanding the distribution of the weights, which are measured in
kilograms, of these men. A histogram of these weights is shown in Figure 1.

To begin with, let us imagine that we do not have any information concerning any other variable. In this
case, our task is essentially to model the data that is being illustrated in the histogram in Figure 1. Although
this data is somewhat positively skewed (skewnsess is 0.48), it is unimodal and roughly bell-shaped, and so
as a first approximation, we could model it as a normal distribution. In other words, we assume that all the
observed weights, which we will denote y1, y2 . . . yn, are samples from a normal distribution with a fixed and
and unknown mean µ and fixed and unknown standard deviation σ.

yi ∼ N(µ, σ2), for i ∈ 1 . . . n.
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Figure 1: Histogram of the distribution of weights (kg) in a sample of men. The bin width is 5kg.

This turns out to be identical to a normal linear regression model with K = 0 predictor variables. Using our
definition of this model just provided, when K = 0, the model is as follows.

yi ∼ N(µi, σ2), µi = β0, for i ∈ 1 . . . n,
yi ∼ N(β0, σ

2), for i ∈ 1 . . . n.

In other words, the intercept term of the linear β0 represents the mean of the normal distribution from which
each of y1, y2 . . . yn is assumed to have been drawn.

This model with no predictor variables essentially provides an unconditional probabilistic model of the weights
y1, y2 . . . yn, and also its treats the probability distribution for each yi as independent of the others. We can
write this as follows.

P(y1 . . . yn|~β, σ2) =
n∏
i=1

P(yi|β, σ2) =
n∏
i=1

N(yi|β0, σ
2).

Now let us consider what happens when we use an explanatory variable, such as the men’s heights, to help
us understand the distribution of men’s weights. In Figure 2, we provide the histograms (a) and density
plots (b) of weights subdivided by the quintile of the men’s height. In each quintile based group, we see
that the distribution of heights is roughly normally distributed. We can also see that the means of these
normal distributions increase as the height quintile increases. In fact, from Figure 2c, which plots the mean
height against the mean weight in each quintile group, we see that the mean weight increases almost perfectly
linearly with the increase in mean height.

Denoting the heights of the men by x1, x2 . . . xn, our new probabilistic model of their weights y1, y2 . . . yn
could be as follows.

yi ∼ N(µi, σ2), µi = β0 + β1xi, for i ∈ 1 . . . n.

In other words, we our assuming that each observed weight yi is a sample drawn from a normal distribution.
The mean of this normal distribution is determined by the corresponding observed height xi according to
the linear relationship µi = β0 + β1xi. For simplicity and convenience, but not of necessity, we also usually
assume that the standard deviation of these distributions are all identical and have the value of σ. This is
the homogeneity of variance assume. While it is widely and sometimes unquestionably made, it is at least
somewhat dubious in this case as it appears that the standard deviation of the weight may be increasing as
height increases.

Although we have been referring specifically to the model above as being a model of the n weights y1, y2 . . . yn,
it is in fact a model of men’s weight generally, with y1, y2 . . . yn being just a sample from a population of men’s
weights. In particular, it provides us with a model of the distribution of male weight conditional on their
height. For example, according to the model, for any given male height x′, the corresponding distribution of
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Figure 2: The histograms (a) and density plots (b) of the weights in a sample of men who are subdivided
according to the quintile of their heights. In (c), we plot the mean weight against the mean height in each
quintile.

male weights is normally distributed with a mean µ′ = β0 +β1x
′ and standard deviation σ. It also tells us that

as height changes by any amount ∆x, the mean of the corresponding normal distribution over weight changes
by exactly β1∆x. This fact entails that if height changes by exactly ∆x = 1, the mean of the corresponding
normal distribution over weight changes by exactly β1. From this, we have the general interpretation of the
coefficient β1 in a linear model with a single predictor as the change in the average of the distribution over
the outcome variable for a unit change in the predictor variable.

We may use more explanatory variables to predict or explain the distribution of men’s heights. For example,
we also have a variable age that gives us the men’s age in years. And so we can see how the distribution of
weight varies as either, or both, the height and the age of men changes.

In Figure 3, we see the density plots of male weight for each height quintile and each age tercile. For any
given combination of height and age, we have a distribution over weight that can be modelled as a normal
distribution. For any given age tercile, as height increases, so too does the average of the distribution of
weight. Likewise, for any given height quintile, as age increases, so too does the average distribution of weight.
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Figure 3: The density of male weight for the different quintiles of male height, and the different terciles of
age. Although the changes by age are subtle, by paying attention to the vertical grid lines we see that for any
given height, as age increases, so too does the average of the weight distribution.

Denoting the men’s heights by x11, x12 . . . x1i . . . x1n and the men’s ages by x21, x22 . . . x2i . . . x2n, the model
is now

yi ∼ N(µi, σ2) µi = β0 + β1x1i + β2x2i.

If the height variable changes by ∆x1 , when age is held constant, then the average value of the corresponding
distribution of weight changes by β1∆x1 . Conversely, if the age variable changes by ∆x2 , when height is held
constant, then the average value of the corresponding distribution of weight changes by β2∆x2 . The value
of β1 gives us the rate of change of the average of the distribution of men’s weights for every unit change
in height, assuming age is held constant The value of β2 gives us the rate of change of the average of the
distribution of men’s weights for every unit change in age, assuming height is held constant.

Classical approaches to normal linear models
Given observed values of an outcome variable y1, y2 . . . yn, and given n corresponding vectors of K predictor
variables ~x1, ~x2 . . . ~xn, and if we model y1, y2 . . . yn using the normal linear model

yi ∼ N(µi, σ2), µi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n,

then we immediately face the problem of inferring the values of the unknown variables1 β0, β1 . . . βK and σ.
As discussed in the previous chapter, here are two main approaches to the inference of the unknown variables:
maximum likelihood estimation and Bayesian inference. Of these two approaches, maximum likelihood
estimate is both the default and traditional approach, and we will consider in this section. However, Bayesian
methods have been steadily increasing in their popularity for decades and there is now powerful and flexible

1It should be noted that some approaches to statistical inference insist on referring to these variables as parameters rather
variables per se, preferring to reserve the term variables for observed or latent data variables. However, we will not insist upon
this term here for reasons that will hopefully become clear as we proceed.
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yet simple to use Bayesian regression modelling software available in R, and so this will be covered in a
subsequent section.

Maximum likelihood estimation
As we have seen in the previous chapter, maximum likelihood estimation estimates the values of the unknown
variables in the model as those that maximize the model’s likelihood function. The likelihood function is a
function over the unknown variable space, which in this case is a K + 2 dimensional space (i.e., the K + 1
coefficients β0, β1 . . . βK and σ). We will denote this space by Θ and a point in this space, which is a particular
set of values for β0, β1 . . . βK , σ by θ. The value of the likelihood function at the point θ gives the probability
of the observed data when the unknown variables are equal to θ. If we denote the observed data, which in
our case is (y1, ~x1), (y2, ~x2) . . . (yi, ~xi) . . . (yn, ~xn), by D, the likelihood function can be written as2

L(θ|D) = P(D|θ).

The maximum likelihood estimator, denoted θ̂ is the value that maximizes this function and so is defined as
follows.

θ̂ = argmax
θ

L(θ|D).

Note that because the logarithm is a monotonic function, maximizing the logarithm of L(θ|D) is the same as
maximizing L(θ|D), which is the same as minimizing the negative of the logarithm of L(θ|D).

θ̂ = argmax
θ

L(θ|D) = argmax
θ

logL(θ|D) = argmin
θ
− logL(θ|D).

The logarithm of L(θ|D) is as follows.

logL(θ|D) = log P(D|θ) = log
n∏
i=1

P(yi|xi, β, σ)

=
n∑
i=1

log P(yi|xi, β, σ)

=
n∑
i=1

log 1√
2πσ2

exp
(
−|yi − µi|

2

2σ2

)
,

= −n2 log(2πσ2)− 1
2σ2

n∑
i=1
|yi − µi|2,

where µi = β0 +
∑K
k=1 βkxki.

The difference

yi − µi = yi −

(
β0 +

K∑
k=1

βkxki

)
is known as the residual. It is the difference between the observed value of the outcome variable yi and the
mean of the outcome variable according to the linear function of ~xi. In a simple linear model, with one
predictor variable, we can easily visualize residuals. These are shown as the vertical blue line segments in
Figure 4.

The sum of the squared residuals is

RSS =
n∑
i=1
|yi − µi|2.

RSS is obviously the summation term in logL(θ|D). This will always be positive, and so the larger it is, the
lower the likelihood. Thus, for any value of σ, maximizing the likelihood with respect to β0, β1 . . . βK will

2More strictly speaking, we should define L(θ|D) as L(θ|D) = c · P(D|θ), where c is an arbitrary positive constant.
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Figure 4: A set of five points (y1, x1), (y2, x2) . . . (y5, x5) are shown in black in both subfigures. Likewise, in
each figure, a line y = mx+ c is shown in red, with different values of m and c in each case. The points in red
are (ŷ1, x1), (ŷ2, x2) . . . (ŷ5, x5) where each ŷi = mxi + c. In other words, the points in red are the values of
the linear function y = mx+ c that correspond to the sequence x1, x2 . . . x5. The line segments shown in blue
are the residuals. These are the vertical differences between the points y1, y2 . . . y5 and the points ŷ1, ŷ2 . . . ŷ5.
The sum of the squared residuals is less in subfigure b) than in subfigure a), and so we say that the line in b)
is a better fit to the data. In general, in normal linear regression, finding the line that minimizes the sum of
the squared residuals gives us the maximum likelihood estimator of the regression coefficients. Usually, we
call the line minimizing the sum of the squared residuals the line of best fit.

always be obtained by minimizing RSS. This is an important result, it tells us that maximum likelihood
estimator for the coefficients β0, β1 . . . βK can be obtained by minimizing the sum of the squared residuals.
In linear regression, the line that minimizes RSS is known as the line of best fit.

In order to find the values of ~β that minimize RSS, it is helpful to write RSS in matrix form. First note that

RSS = ~ε
ᵀ
~ε,

where
ε = [ε1, ε2 . . . εn]ᵀ,

and
εi = yi − µi.

We may then write ~ε in matrix form as follows.

~ε =



ε1
ε2
...
εi
...
εn


=



y1
y2
...
yi
...
yn


−



µ1
µ2
...
µi
...
µn


=



y1
y2
...
yi
...
yn


−



1 x11 x21 . . . xK1
1 x12 x22 . . . xK2
...

...
... . . .

...
1 x1i x2i . . . xKi
...

...
... . . .

...
1 x1n x1n . . . xKn




β0
β1
...
βK

 = ~y −X~β

The crucial part here is writing ~µ = [µ1, µ2 . . . µi . . . µn]ᵀ as a matrix vector multiplication, i.e. ~µ = X~β. Here,
X is a n× (K + 1) matrix whose first column is all ones, and each subsequent column is the n observations
of each of the K predictor variables. This matrix X is usually known as the design matrix.
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From this, we have
RSS = (~y −X~β)ᵀ(~y −X~β).

This can be expanded as follows.
RSS = ~y

ᵀ
~y − 2~yX~β + ~βᵀX

ᵀ
X~β.

In order to find the minimum of RSS with respect to ~β, we can calculate the gradient of RSS with respect
to ~β, set this to equal to zero, and solve for β. To simplify the calculation, we may instead calculate the
gradient of 1

2RSS with respect to ~β, set this to equal to zero, and solve for β, and arrive at the same result.
The gradient is as follows.

∇β
RSS

2 = X
ᵀ
X~β −Xᵀ

~y.

Setting this equal to zero we get
X

ᵀ
X~β = X

ᵀ
~y.

Then solving3 for ~β we get
β̂ = (Xᵀ

X)−1
X

ᵀ
~y.

Thus, β̂ is the maximum likelihood estimator for β.

To obtain the maximum likelihood for σ2, we calculate the partial derivative of logL(θ|D) with respect to σ2

when ~β is set to β̂. Then we set this derivative equal to zero and solve for σ2.

The log of the likelihood when ~β = β̂ can be written as follows.

−n2 log(2π)− n

2 log(σ2)− 1
2σ2 (~y −Xβ̂)ᵀ(~y −Xβ̂).

The derivative of this function with respect σ2 is

− n

2σ2 −
1

2σ4 (~y −Xβ̂)ᵀ(~y −Xβ̂).

Setting this equal to zero, multiplying both sides by 2σ2 to simplify it, and then solving for σ2, we obtain

σ̂2
mle = 1

n
(~y −Xβ̂)ᵀ(~y −Xβ̂),

= 1
n

n∑
i=1
|yi − µ̂i|2,

where µ̂i = β̂0 +
∑
β̂kxki is the mean of the outcome variable corresponding to ~xi assuming the coefficients

are β̂. Thus, the maximum likelihood estimate of σ2 is the mean of the squared residuals, and the maximum
likelihood estimator of σ is the square root of this mean.

It turns out that the maximum likelihood estimator σ̂2 is a biased estimator of the true value of σ2. An
unbiased estimator is as follows.

σ̂2 = 1
n−K − 1

n∑
i=1
|yi − µ̂i|2,

= n

n−K − 1 σ̂
2
mle

This version is used widely as the estimator of σ2.

Having calculated the maximum likelihood estimators β̂ and σ̂mle, we can now evaluate the log of the likelihood
function at its maximum by substituting β̂ and σ̂mle for ~β and σ, respectively, in the log likelihood function.

L(θ|D) = −n2 log(2π)− n

2 log(σ2)− 1
2σ2 (~y −X~β)ᵀ(~y −X~β).

3This assumes that Xᵀ
X is invertible, which it will be if K < n.
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This is
logL(θ = {β̂, σ̂mle}|D) = −n2 log(2π)− n

2 log(σ̂2
mle)− 1

2σ̂2
mle

(~y −Xβ̂)ᵀ(~y −Xβ̂),

= −n2 log(2π)− n

2 log(σ̂2
mle)− n

2 ,

= −n2
(
log(2π) + log(σ̂2

mle) + 1
)
,

= −n2 (log(2π)− log(n) + log (RSS) + 1) .

Maximum likelihood estimation using lm

The main command for doing normal linear modelling in R is lm. This is probably the most widely used
statistical modelling command in R.

As an example, we will model weight as a function of height and age in the sample of men in the
weight_male_df

M <- lm(weight ~ height + age, data = weight_male_df)

The first thing we usually do with the object returned by lm is to look at the output provided by the summary
function.

summary(M)
#>
#> Call:
#> lm(formula = weight ~ height + age, data = weight_male_df)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -40.860 -8.209 -1.006 7.355 47.819
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -97.97157 4.90633 -19.97 <2e-16 ***
#> height 0.97875 0.02763 35.43 <2e-16 ***
#> age 0.38484 0.02150 17.90 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.1 on 4079 degrees of freedom
#> Multiple R-squared: 0.2767, Adjusted R-squared: 0.2764
#> F-statistic: 780.3 on 2 and 4079 DF, p-value: < 2.2e-16

Although there is a lot of valuable information here, we will not pick it all apart immediately, preferring
instead to concentrate on individual results one at a time through this and subsequent sections.

We will begin by focusing on the estimated values of the coefficients β0 (the intercept), β1 (coefficient for
height), β2 (coefficient for age). These are available in the Coefficients section of the summary output
under the column labelled Estimate. They may also be returned directly using the coef (or equivalently,
the coefficients) function.

(estimates <- coef(M))
#> (Intercept) height age
#> -97.9715727 0.9787473 0.3848439

The meaning of these values is as follows. The coefficient for height, 0.9787473, gives the estimated change
in average of the distribution of weight for every unit increase of height, assuming age is held constant.
The coefficient for age, 0.3848439, gives the estimated change in average of the distribution of weight for
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every unit increase of age, assuming height is held constant. Because understanding the meaning of the
coefficients in regression analyses is so important, let us go through these values carefully. First, assume that
we have a very large group of men who have exactly the same age in years. It in fact does not matter what
particular age they are, but for concreteness, let’s just assume their age is 30 years. Then, we find all the
men in this group who have a particular height. Again, it does not matter which height we choose, but for
concreteness, let’s assume we look at those that have a height of 175cm. Now, we will look at the distribution
of the weight of these men who are 30 years old and 175cm. Our model assumes that it will be a normal
distribution whose mean, which we will denote by µ̂(175,30), is estimated to be (rounding the coefficients to
three decimal places) as follows.

µ̂(175,30) = −97.972 + 0.979 · 175 + 0.385 · 30 = 84.85.

Now, let us assume we stay with the 30 year men, but find all the men in this age group whose heights are
176 rather than 175. The corresponding mean of the distribution of weight would change by exactly 0.979.
We can see this as follows.

µ̂(176,30) = −97.972 + 0.979 · 176 + 0.385 · 30,
= −97.972 + 0.979 · (175 + 1) + 0.385 · 30,
= −97.972 + 0.979 · 175 + 0.385 · 30 + 0.979,
= µ̂(176,30) + 0.979,
= 85.83.

Were we to choose 30 year men whose heights were 177, then the corresponding mean of the distribution
of weights would again increase by exactly 0.979. This increase by 0.979 for every unit increase in height
would occur regardless of what age group we were focusing on. For example, if instead of looking at 30 year
old men, we looked at 40 year men, and then looked at men in this age group who were 175, 176, or 177 cm,
etc., we would see that the average of the corresponding distribution of weight would increase by 0.979 for
each cm change in height.

µ̂(175,40) = −97.972 + 0.979 · 175 + 0.385 · 40,
µ̂(176,40) = −97.972 + 0.979 · 176 + 0.385 · 40,

= −97.972 + 0.979 · (175 + 1) + 0.385 · 40,
= −97.972 + 0.979 · 175 + 0.385 · 40 + 0.979,
= µ̂(175,40) + 0.979,

µ̂(177,40) = −97.972 + 0.979 · 177 + 0.385 · 40,
= −97.972 + 0.979 · (176 + 1) + 0.385 · 40,
= −97.972 + 0.979 · 176 + 0.385 · 40 + 0.979,
= µ̂(176,40) + 0.979.

Reasoning along these lines, we can see that when we hold age constant at any value, and increase height by
1cm from any starting value, the corresponding mean of the distribution of weight always increases by 0.979.
Similarly, and for identical reasons, if we hold height constant at any value, and increase age by 1 year from
any starting value, the corresponding mean of the distribution of weight always increases by 0.385.

The intercept term, by contrast, can sometimes be relatively meaningless. It is always exactly the average of
the distribution of the outcome variable when the predictor variable or variables have values of zero. Given
that having zero as the value of height and age is essentially meaningless, so too then is the value of the
intercept term. However, when values of zero of the predictor are meaningful, then likewise the intercept is
meaningful too. Consider, the situation where we change height and age by subtracting their mean values.
As a result, both have means of zero, and their values indicate the difference from the man’s height or age
from average. We can perform the same regression analysis as above with these zero mean height and age
variables.

weight_male_df %>%
mutate(height = height - mean(height),
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age = age - mean(age)
) %>% lm(weight ~ height + age, data = .) %>%
coef()

#> (Intercept) height age
#> 85.5239588 0.9787473 0.3848439

As we can see, the coefficients for height and age are as before. However, the intercept term is now 85.524
rather than -97.972 as in the original model. As the intercept is always the average of the distribution of
the outcome variable when the predictors are zero, and because the predictors having a value of zero denote
a person of average height and average age, then the intercept term of 85.524 is simply the mean of the
distribution of weight for a man of average height and age.

Let us now verify that coefficients calculated above (in the original model) are the maximum likelihood
estimators defined by β̂ = (Xᵀ

X)−1
X

ᵀ
~y. For this, we will use some of R’s matrix operations, particularly t()

for the matrix transpose, %*% for matrix multiplication or inner product, and solve for the matrix inverse.

y <- weight_male_df %>% pull(weight)
n <- length(y)

# design matrix
X <- weight_male_df %>%

mutate(intercept = 1) %>%
select(intercept, height, age) %>%
as.matrix()

# beta hat
solve(t(X) %*% X) %*% t(X) %*% y
#> [,1]
#> intercept -97.9715727
#> height 0.9787473
#> age 0.3848439

Clearly, these are the values returned by coefficients(M).

While the design matrix above was simple to create, in general it is easier to use tools in R such as
modelr::model_matrix or base R’s model.matrix.

library(modelr)

X <- model_matrix(weight_male_df, weight ~ height + age) %>%
as.matrix()

# beta hat
solve(t(X) %*% X) %*% t(X) %*% y
#> [,1]
#> (Intercept) -97.9715727
#> height 0.9787473
#> age 0.3848439

As mentioned, the unbiased estimator of σ in this model is

σ̂ =

√√√√ 1
n−K − 1

n∑
i=1
|yi − µ̂i|2.

This is return by the command sigma applied to the model M.

sigma(M)
#> [1] 12.09717
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We can verify that the value of sigma(M) is σ̂2 by using the vector of residuals, i.e. ~ε = [y1 − µ̂1, y2 −
µ̂2 . . . yn − µ̂n]ᵀ, which can obtained by residuals(M).

n <- nrow(X)
K <- ncol(X) - 1

epsilon <- residuals(M)

sqrt(sum(epsilon^2)/(n - K - 1))
#> [1] 12.09717

We can also verify that σ̂ =
√

n
n−K−1 σ̂

2
mle.

sigma2_mle <- mean(epsilon^2)
sqrt(n * sigma2_mle/(n - K - 1))
#> [1] 12.09717

The value of the log of the likelihood at its maximum can be obtained from the logLik function applied to M.

logLik(M)
#> 'log Lik.' -15966.92 (df=4)

We can verify that this gives us the following

logL(θ = {β̂, σ̂mle}|D) = −n2 (log(2π)− log(n) + log (RSS) + 1) .

rss <- sum(epsilon^2)
-(n/2) * (log(2*pi) - log(n) + log(rss) + 1)
#> [1] -15966.92

Sampling distribution of β̂
In general, in a normal linear model, we assume that y1, y2 . . . yn was generated as follows.

yi ∼ N(µi, σ2), µi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n,

where β0, β1 . . . βK and σ have some fixed but unknown values. Let us denote the true, but unknown, values
of β0, β1 . . . βK and σ by ~β? and σ?, respectively. Using the matrix notation from before, this means that we
are assuming that

~y ∼ N(X~β?, Iσ2
?
),

where Iσ2
?
is an n× n diagonal matrix with σ2

? at each value on the diagonal. This means that

~y = X~β? + ~ε, ~ε ∼ N(0, Iσ2
?
).

We have established that β̂ is
β̂ = (Xᵀ

X)−1
X

ᵀ
~y.

Therefore, we have
β̂ = (Xᵀ

X)−1
X

ᵀ(X~β? + ~ε),

= (Xᵀ
X)−1

X
ᵀ
X~β? + (Xᵀ

X)−1
X

ᵀ
~ε,

= ~β? + (Xᵀ
X)−1

X
ᵀ
~ε.

Because ~ε is a zero mean (multivariate) normally distributed random variable, (Xᵀ
X)−1

X
ᵀ
~ε is also a zero

mean normally distributed random variable, and its variance can be shown to be σ2
?(Xᵀ

X)−1. From this, we
obtain

β̂ ∼ N(~β?, σ2
?(Xᵀ

X)−1).
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This is the sampling distribution of the maximum likelihood estimator β̂. From this, for any given element of
β̂, its sampling distribution is

β̂k ∼ N(β?k , σ2
?(Xᵀ

X)−1
kk

).

This entails that
β̂k − β?k

σ?

√
(Xᵀ

X)−1
kk

∼ N(0, 1).

For the unbiased estimator σ̂2, it can shown that

(n−K − 1) σ̂
2

σ2
?

∼ χ2
n−K−1.

For any variable Z distributed as a standard normal distribution and any variable V distributed as a χ2

distribution with ν degrees of freedom, we have the following result.

Z

√
ν

V
∼ tν ,

where tν indicates a t-distribution with ν degrees of freedom. From this, we have the following result.

β̂k − β?k
σ?

√
(Xᵀ

X)−1
kk

√
(n−K − 1)

(n−K − 1) σ̂2

σ2
?

= β̂k − β?k
σ̂
√

(Xᵀ
X)−1

kk

= β̂k − β?k
ŝek

∼ tn−K−1.

We usually refer to σ̂
√

(Xᵀ
X)−1

kk
as the standard error of the estimator β̂k, and so we denote it here by ŝek.

With this result, as we will see, we may use our estimator of β̂k to test the hypotheses that β?k has any given
value. Likewise, we may use this result to calculate confidence intervals for β̂k.

Hypothesis testing and confidence intervals using lm

The standard errors for all K + 1 estimators β̂0, β̂1 . . . β̂K can be obtained from the coefficients table that is
given in the summary(M). We extract this table as an attribute of the summary output as follows.

summary(M)$coefficients
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -97.9715727 4.90632557 -19.96842 1.025374e-84
#> height 0.9787473 0.02762615 35.42830 6.065526e-240
#> age 0.3848439 0.02149567 17.90332 4.586034e-69

The standard errors are obviously given by the second column, which we extract as a vector.

(std_err <- summary(M)$coefficients[,2])
#> (Intercept) height age
#> 4.90632557 0.02762615 0.02149567

Let us first verify that these are σ̂
√

diag((Xᵀ
X)−1), where diag extracts the diagonal of a square matrix.

sigma(M) * sqrt(diag(solve(t(X) %*% X)))
#> (Intercept) height age
#> 4.90632557 0.02762615 0.02149567

Now, should we wish test a null hypothesis that the true value of the coefficient for the height predictor is
zero, i.e. H0 : β?height = 0, we know that under this hypothesis β̂height/seheight is distributed as t-distribution
with n−K − 1 degrees of freedom. The observed value of this t-statistic is as follows.
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(t_stat <- estimates['height']/std_err['height'])
#> height
#> 35.4283

Note that this value is available in the t value column in the coefficients table above. The p-value
corresponding to this t-statistic gives the probability of a getting a result as or more extreme than this value
in a t-distribution with n−K − 1 = 4079 degrees of freedom. In this case, this probability of having a value
greater than 35.428297 or lower than -35.428297 in this t-distribution. In other words, it is the sum of two
tail areas in a t-distribution. Because this t-distribution is symmetrical and centred at zero, the two tail
areas probabilities are identical, and so their sum is any one of them multiplied by two.

To calculate the tail areas in a t-distribution we need its cumulative distribution function. If we denote
the density function of a t-distribution with ν degrees of freedom by t(x|ν), the corresponding cumulative
distribution function is

Tν(x) =
∫ x

−∞
t(x′|ν)dx′.

For any value x, Tν(x) is the probability of getting a result less than or equal to x in a t-distribution with ν
degrees of freedom. This function is implemented in R using the pt function. For example, if x = 1.5 and
ν = 5, then Tν=5(x = 1.5) is obtained as follows.

pt(1.5, df = 5)
#> [1] 0.9030482

If we wanted the 1−Tν(x) =
∫∞
x
t(x′|ν)dx′, we could use the lower.tail = FALSE option in pt. For example,

the probability of getting a value greater than x = 1.5 in a t distribution with ν = 5 is

pt(1.5, df = 5, lower.tail = F)
#> [1] 0.09695184

Therefore, to get the sum of the tail areas, we do the following.

pt(t_stat, df = n-K-1, lower.tail = F) * 2
#> height
#> 6.065526e-240

As we can see, this (very small) number is what is also reported in the Pr(>|t|) column in the summary
coefficients table.

For the calculation of confidence intervals, we need the inverse of the cumulative distribution function, defined
as T−1

ν (p) where p ∈ (0, 1). This returns the value x such that Tν(x) = p. If a variable x has a t-distribution
with ν degrees of freedom, we can make statements like

P
(
T−1
ν (0.05) ≤ x ≤ T−1

ν (0.95)
)

= 0.9,
P
(
T−1
ν (0.005) ≤ x ≤ T−1

ν (0.995)
)

= 0.99,

or more generally
P
(
T−1
ν (ε) ≤ x ≤ T−1

ν (1− ε)
)

= 1− 2ε,

where ε ∈ (0, 0.5).

By the fact that β̂k−β?k
ŝek has a t-distribution with ν = n−K − 1 degrees of freedom, we can therefore state

P
(
T−1
ν (ε) ≤ β̂k − β?k

ŝek
≤ T−1

ν (1− ε)
)

= 1− 2ε.

We can then rearrange this statement as follows.

P
(
β̂k − T−1

ν (ε) · ŝek ≥ β?k ≥ β̂k − T−1
ν (1− ε) · ŝek

)
= 1− 2ε.
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If we denote T−1
ν (1−ε) by τ(1−ε,ν), which is always a positive quantity, because the t-distribution is symmetric,

T−1
ν (ε) = −τ(1−ε,ν). Substituting in, this leads to

P
(
β̂k − τ(1−ε,ν) · ŝek ≤ β?k ≤ β̂k + τ(1−ε,ν) · ŝek

)
= 1− 2ε.

This is the 1− 2ε confidence interval. Thus, for example, if want to obtain the 95% confidence intervals for
the height coefficient, we first obtain τ(0.975,n−K−1) as follows

tau <- qt(0.975, df = n-K-1)

and then obtain the confidence interval as follows

estimates['height'] + c(-1, 1) * std_err['height'] * tau
#> [1] 0.924585 1.032910

This is also confidently available using the confint function applied to the lm object M.

confint(M, parm = 'height', level = 0.95)
#> 2.5 % 97.5 %
#> height 0.924585 1.03291

We can use confint to obtain the confidence interval at any given level for any or all predictor variables or
the intercept term by changing parm and level accordingly. Note that by default, confint gives the 95%
confidence interval for all predictor variables.

confint(M)
#> 2.5 % 97.5 %
#> (Intercept) -107.5906483 -88.3524970
#> height 0.9245850 1.0329096
#> age 0.3427007 0.4269872

Predictions
Given the definition of the normal linear model, if we knew the true values of β0, β1 . . . βK , σ

2, which we will
denote again by ~β? and σ2

?, then for any new vector of predictor variables ~xι, the corresponding y′ is

yι ∼ N(µ?ι , σ2
?), µ?ι = β?0 +

K∑
k=1

β?kxιk,

where the mean of this distribution, µ?ι , is the linear function of ~xι, which we could also write µ?ι = ~xι~β?.

Of course, however, we do not know the ~β? and σ2
?. On the other hand, we have estimates for them, which

we have denoted by β̂ and σ̂2, and in the previous section, we saw their sampling distributions:

β̂ ∼ N(~β?, σ2
?(Xᵀ

X)−1), (n−K − 1) σ̂
2

σ2
?

∼ χ2
n−K−1.

Based on β̂, the estimated value of µι is µ̂ι = ~xιβ̂, and its sampling distribution is

µ̂ι ∼ N(µ?ι , σ2
? ~xι(X

ᵀ
X)−1

~x
ᵀ

ι
).

For reasons identical to those used above when discussing the sampling distribution of β̂, we have

µ̂ι − µ?ι
σ?

√
~xι(X

ᵀ
X)−1

~x
ᵀ

ι

∼ N(0, 1),

and then
µ̂ι − µ?ι

σ̂
√
~xι(X

ᵀ
X)−1

~x
ᵀ

ι

= µ̂ι − µ?ι
ŝeµι

∼ tn−K−1.
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From this, again following the same reasoning as before, we obtain the confidence interval for µ?ι :

P
(
µ̂ι − τ(1−ε,ν) · ŝeµι ≤ µ?ι ≤ µ̂ι + τ(1−ε,ν) · ŝeµι

)
= 1− 2ε.

There is a second interval that we can consider, that of yι. Given that yι ∼ N(µ?ι , σ2
?), we can write this as

yι = µ?ι + ει where ει ∼ N(0, σ2
?). Using the µ̂ι estimator for µ?ι , we have ŷl = µ̂ι + ει. Given the distributions

of µ̂ι and ει, which are independent of one another, we then have

ŷl ∼ N
(
µ?ι , σ

2
?(1 + ~xι(X

ᵀ
X)−1

~x
ᵀ

ι
)
)
.

Following the same reasoning as above, this leads to the following prediction interval for yι

P
(
µ̂ι − τ(1−ε,ν) · ŝeyι ≤ yι ≤ µ̂ι + τ(1−ε,ν) · ŝeyι

)
= 1− 2ε,

where
ŝeyι = σ̂

√
1 + ~xι(X

ᵀ
X)−1

~x
ᵀ

ι
.

Predictions with lm

We can calculate the confidence interval on µι and the prediction interval on yι using the generic predict
function applied to the lm object. When applied to lm objects, predict will return either the point estimator
µ̂ι, or else the confidence interval on µ?ι , or else the prediction interval on yι depending whether we set
interval option in predict to none, or confidence, or prediction. As an example, let us say we want
to may predictions about a man’s weight when his height is equal to 175 and age is equal to 35. First,
regardless of the type of prediction we need to do, we have to set up a data frame with variables height and
age.

weight_male_df_new <- tibble(height = 175,
age = 35)

Then we can do the following,

predict(M, newdata = weight_male_df_new)
#> 1
#> 86.77874

Here, we did not explicitly set the interval option and so it took its default value of interval = 'none'.
This then gives us simply the estimate of µ̂ι, which is simply the linear function of height using the maximum
likelihood estimates β̂0 and β̂1. We can easily verify this.

mu_hat <- (estimates['(Intercept)'] +
estimates['height'] * 175 +
estimates['age'] * 35) %>%

unname()
mu_hat
#> [1] 86.77874

To obtain the confidence intervals on µ?ι , we use the option interval = 'confidence'.

predict(M,
interval = 'confidence',
newdata = weight_male_df_new)

#> fit lwr upr
#> 1 86.77874 86.35402 87.20346

This is the 95% confidence interval, which is the default, but which we can change by using the level option.
For example, the 99% confidence interval is obtained as follows.
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predict(M,
interval = 'confidence',
level = 0.99,
newdata = weight_male_df_new)

#> fit lwr upr
#> 1 86.77874 86.22047 87.33701

Again, we can verify that this confidence interval is calculated as described above.

x_new <- c(1, 175, 35)
std_err_mu <- sigma(M) * sqrt(x_new %*% solve(t(X) %*% X) %*% matrix(x_new)) %>%

as.numeric()
c(mu_hat,

mu_hat + c(-1, 1) * std_err_mu * qt(0.995, df = n - K - 1)
) %>% set_names(nm = c('fit', 'lwr' ,'upr'))
#> fit lwr upr
#> 86.77874 86.22047 87.33701

To obtain the prediction interval on yι rather than the confidence interval on µ?ι , we use interval =
'prediction'. In the following, we calculate the 99% prediction interval for yι.

predict(M,
interval = 'prediction',
level = 0.99,
newdata = weight_male_df_new)

#> fit lwr upr
#> 1 86.77874 55.5989 117.9586

Again, we can confirm that this value is calculated according to the description above.

std_err_y <- sigma(M) * sqrt(1 + x_new %*% solve(t(X) %*% X) %*% matrix(x_new)) %>%
as.numeric()

c(mu_hat,
mu_hat + c(-1, 1) * std_err_y * qt(0.995, df = n - K - 1)

) %>% set_names(nm = c('fit', 'lwr' ,'upr'))
#> fit lwr upr
#> 86.77874 55.59890 117.95858

R2 and Adjusted R2

The observed values of the outcome variable are y1, y2 . . . yn. The mean and variance of these values are

ȳ = 1
n

n∑
i=1

yi, var(y) = 1
n− 1

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
TSS

.

The TSS summation term in the variance stands for total sum of squares, and is the sum of the squared
differences of each observation from the mean. It can be shown that in general

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
TSS

=
n∑
i=1

(µ̂i − ȳ)2

︸ ︷︷ ︸
ESS

+
n∑
i=1

(yi − µ̂i)2

︸ ︷︷ ︸
RSS

,

where ESS stands explained sum of squares, and RSS stands the residual sum of squares. The RSS is the
sum of the squared residuals when the coefficients take on their maximum likelihood values β̂. The ESS,
by contrast, measures the variability in the outcome variable due to changes in the predictor variables.
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Equivalently, because ȳ = µ̄, where µ̄ = 1
n

∑n
i=1 µ̂i, ESS can also be written as

ESS =
n∑
i=1

(µ̂i − µ̄)2 = (n− 1) · var(µ̂),

and so it is the variability of the predicted mean values of weight. The proportion of the variability in outcome
variable due to changes in predictors is referred to as R2:

R2 = ESS
TSS = var(µ̂)

var(y) .

This is equivalent to 1 minus the proportion of variability in the outcome variable that is residual variation:

R2 = 1− RSS
TSS = 1− σ̂2

var(y) .

R2 is routinely taken to be a measure of model fit in linear models. Given that it is a proportion, it varies
between 0 and 1. When ESS = 0, TSS = RSS and so R2 = 0. When RSS = 0, TSS = ESS, and so R2 = 1.
In other words, R2 takes its maximum value of 1 when the observed values of the outcomes variables can be
predicted exactly as a linear function of the predictors, i.e., for each i, yi = µ̂i =

∑K
k=1 β̂kixki, or equivalently,

for each i, εi = 0. On the other hand, when TSS = RSS, it must be the case that β1 = β2 = . . . βK = 0, and
so no change in the outcome variable’s value can be predicted as a function of any of the K predictors.

R2, by definition, gives the proportion of total variation due to variation in the predictor variables. This
is often stated as the proportion of variation explained by the model. While in one sense this is true by
definition, it is misleading if we interpret it as measuring the extent the predictor explain, in the causal sense,
the outcome variable.

The value of R2 necessarily increases, or does not decrease, as we add more predictors to the model, even if
the true values of the coefficients for these predictors are zero. To overcome this spurious increase in R2, the
following adjustment is applied.

R2
Adj = 1− RSS

TSS
n− 1

n−K − 1 ,

= 1−
(
1−R2) n− 1

n−K − 1︸ ︷︷ ︸
penalty

.

The value of R2
Adj is necessarily less than or equal to R2. The amount of adjustment is determined by the

penalty term. Note that this term is greater than 1 and it multiplies by RSS/TSS, which measures the
proportion of the total variation due to residual variation.
As n increases, R2

Adj and R2 become closer in value, but for relatively small n and relatively large K, the
adjustment can be considerable.

Unlike R2, R2
Adj can have negative values. Moreover, it does not represent a proportion of the total variation

in the outcome variable. For this reason, it is incorrect to state it as measuring, as R2 does, the proportion of
explain variation. On the other hand, both R2 and R2

Adj can be seen as estimators of the true or population
R2, and R2

Adj can be seen as a less biased estimator of this than R2.

R2 and Adjusted R2 with lm

From the lm object, the R2 and R2
Adj are easily obtained using the summary function.

S <- summary(M)
S$r.squared
#> [1] 0.276709
S$adj.r.squared
#> [1] 0.2763543

18



We can verify that these values are calculated as described above.

tss <- sum((y - mean(y))^2)
# R^2
rsq <- (1 - rss/tss)
# Adj R^2
(adj_rsq <- 1 - rss/tss * (n-1)/(n-K-1))
#> [1] 0.2763543

Note than in this case, the adjustment is minimal because n� K and so the penalty term is close to 1.0.

(n-1)/(n-K-1)
#> [1] 1.00049

Model comparison
Given that R2 = 0 if and only if β1 = β2 = . . . βK = 0, a null hypothesis test that R2 = 0 is the hypothesis that
all coefficients, except the intercept term, are simultaneously zero. When all coefficients are simultaneously
zero, we are essentially saying that the following two models are identical.

M0 : yi ∼ N(µ̂i, σ2), µ̂i = β0, for i ∈ 1 . . . n,

M1 : yi ∼ N(µ̂i, σ2), µ̂i = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

InM0 andM1, we have estimators σ̂2
M0

and σ̂2
M1

, respectively, which are both of σ2
?.

Both are estimators of σ2
?, and their respective relationships to σ2 are as follows:

(n− 1)σ̂2
M0

σ2 = RSS0

σ2 ∼ χ2
n−1,

(n−K − 1)σ̂2
M1

σ2 = RSS1

σ2 ∼ χ2
n−K−1.

The ratio of the difference of RSS0 and RSS1 to σ2 is also distributed as a χ2

RSS0 − RSS1

σ2 ∼ χ2
K .

Given that
RSS0 − RSS1

σ2 ,
RSS1

σ2

are independent of one another and both are χ2 distributed with K and n − K − 1 degrees of freedom,
respectively, then we have the following sampling distribution under the null hypothesis:

(RSS0 − RSS1) /K
RSS1/(n−K − 1) ∼ F (K,n−K − 1).

Note that above statistic can be rewritten as follows.

ESS/K
RSS/(n−K − 1) = R2

1−R2 ×
n−K − 1

K
∼ F (K,n−K − 1).

We can extend the above result to test whether any subset of the K predictors have coefficients that are
simultaneously zero. In general, we can compare two models M1 and M0 that K1 and K0 predictors,
respectively, and where K0 < K and all the K0 predictors in M0 are also present in M1. Following
identical reasoning to the above, the null hypothesis that the K1 −K0 predictors inM1 and not inM0 are
simultaneously zero is

(RSS0 − RSS1) /(K1 −K0)
RSS1/(n−K1 − 1) ∼ F (K1 −K0, n−K1 − 1).
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Model comparison using lm

The results of the null hypothesis test that R2 = 0 can be obtained in numerous ways, but the easiest is to
use the generic anova function where we compare model M against M_null.

M_null <- lm(weight ~ 1, data = weight_male_df)
A <- anova(M_null, M)
A
#> Analysis of Variance Table
#>
#> Model 1: weight ~ 1
#> Model 2: weight ~ height + age
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 4081 825294
#> 2 4079 596927 2 228366 780.25 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the values in the Sum Sq column are the TSS and RSS, respectively, which we can verify

c(tss, rss)
#> [1] 825293.6 596927.5

The TSS is in fact the RSS of the null model with no predictors. The ESS is therefore as follows.

ess <- tss - rss

Likewise, the Df and the second value of the Res.Df column give us the degrees of freedom by which ess and
rss are divided.

c(K, n - K - 1)
#> [1] 2 4079

The F value column gives the ratio of these two values.

f_stat <- (ess/K) / (rss/(n - K - 1))
f_stat
#> [1] 780.2501

Finally, the p-value gives us the probability of getting a result greater than this F statistic in an F distribution
with K and n−K − 1 degrees of freedom. We can calculate this using the cumulative distribution function
of the F distribution, which is pf.

pf(f_stat, K, n-K-1, lower.tail = F)
#> [1] 1.172286e-287

This is identical to the value calculated by the anova function, which we may verify if we extract the value
from the Anova table.

A[2,'Pr(>F)']
#> [1] 1.172286e-287

Bayesian approaches to normal linear models
In the Bayesian approach to normal linear models, our starting point is identical to that of the classical
approach. Specifically, we assume we have n independent observations that can be represented as follows

(y1, ~x1), (y2, ~x2) . . . (yi, ~xi) . . . (yn, ~xn),
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and we assume the following model of y1, y2 . . . yn:

yi ∼ N(µi, σ2), µi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

We also assume that ~β = β0, β1 . . . βK and σ2 have fixed but unknown values. Inference in Bayesian approaches,
just like in classical approaches, aims to infer what these values are. The reasoning and procedure on how to
do this, however, differs markedly between the two approaches. Despite this, as we will see, the ultimate
conclusions can nonetheless be remarkably similar to one another.

As we’ve seen in the previous chapter, the fundamental point of departure between the classical and the
Bayesian approaches is that the Bayesian approach assumes that ~β and σ have been drawn from a prior
distribution. The prior effectively extends the linear model above. Writing ~xi~β = β0 +

∑K
k=1 βkxki, the

extended model is
yi ∼ N(~xi~β, σ2), for i ∈ 1 . . . n,

~β, σ ∼ P(~β, σ),

where P(~β, σ) is an, as yet unspecified, probability distributions over ~β and σ, respectively. In other words,
the Bayesian approach assumes, like the classical approach, that each yi is drawn from a normal distribution
centred at ~xi~β and whose standard deviation is σ. However, the Bayesian approach, unlike the classical
approach, also assumes that the values ~β and σ have been drawn from the probability distribution P(~β, σ).
Having made this assumption, it is now possible to use Bayes’ theorem to calculate the posterior probability
that ~β and σ have any given values conditional on the data we have observed. Writing ~y for the n× 1 vector
of outcome variable observations, and X for the n× (K + 1) matrix of predictors, the posterior distribution
can be written as follows.

posterior︷ ︸︸ ︷
P(β, σ|~y,X) =

likelihood︷ ︸︸ ︷
P(~y|X, ~β, σ)

prior︷ ︸︸ ︷
P(~β, σ)∫

P(~y|X, ~β, σ)P(~β, σ)dβdσ︸ ︷︷ ︸
marginal likelihood

.

In general across all Bayesian models, the posterior distribution is a probability distribution, i.e. a non-negative
function over all possible values of a variable, which may be multivariate, that integrates to exactly 1.0.
However, whether we have a closed form or analytic expression for this function varies from model to model.
As described in the previous chapter, a closed form or analytic expression means that the function can be
described, like all probability distributions we have seen so far, in a finite number of mathematical operations.
Informally speaking, when there is a closed form or analytic expression, we say we have a formula for the
probability distribution and we can obtain the value of the function at any value of the variable by a small
number of calculations, possibly even by hand. For most Bayesian models, we simply do not have closed form
expressions for the posterior distribution. This is primarily because the right hand side of the formula above
involves the evaluation of an integral, which is the product of two functions, and there may be no analytic
expression for this integral. In situations where we have no closed form expression for the posterior, we
generally resort to Monte Carlo, specifically Markov Chain Monte Carlo (mcmc), sampling methods whereby
we draw samples from the posterior distribution. We provided an introduction to mcmc in the previous
chapter and throughout the remaining chapters, we will often use mcmc, and in doing so, it will become
more apparent what these methods afford us in practice.

For normal linear models, with judicious choices of the types of priors we use, we can in fact obtain analytic
expressions for the posterior distribution. It can be informative and useful to use these approaches. On the
other hand, by using mcmc sampling methods, we are not limited to certain choices of priors. Moreover, the
mcmc sampling methods we use for normal linear models are identical to those used for more general and
more complex statistical models, and so using and understanding these sampling methods in normal linear
model, which are relatively simple, can be very helpful before to using them in more complex models. As
such, we will consider both the analytic and mcmc based approaches here.
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Closed form solutions
The first term in the numerator on the right hand side of Bayes’ rule above is the likelihood function. The
likelihood function is not a probability distribution, but is a function over the ~β and σ space. It is exactly
the same function that was maximized to find the maximum likelihood estimators in the classical approach
to inference in linear models. It can be written as follows.

P(~y|X, β̂, σ) =
n∏
i=1

P(yi|~xiβ, σ2),

=
(

1√
2π

)n
σ−n exp

[
− 1

2σ2 (~y −X~β)ᵀ(~y −X~β)
]
,

=
(

1√
2π

)n
σ−n exp

[
− 1

2σ2

[
(n−K − 1)σ̂2 + (~β − β̂)ᵀXᵀ

X(~β − β̂)
]]
,

where β̂ and σ̂2 have identical values to those defined above, namely

β̂ = (Xᵀ
X)−1

X
ᵀ
~y,

σ̂2 = 1
n−K − 1

n∑
i=1
|yi − µ̂i|2.

The second term in the numerator is the prior. Like the the likelihood function, it is a function over the ~β
and σ space, but of course it is also a probability distribution. In principle, this probability distribution can
be from any parametric family that is defined on the ~β and σ space. However, as mentioned, in order to
obtain an analytic expression for the posterior, we must restrict our choices of probability distributions. One
common choice for normal linear models is to use an uninformative prior, specifically one that is uniform
over ~β and log(σ). This turns out to be equivalent to

P(~β, σ2) ∝ 1
σ2 .

This prior works well when n is relatively large and K is relatively small4.

The posterior P(~β, σ|~y,X) is the product of the likelihood and the prior, divided by their integral. The
resulting distribution is a normal-inverse-Gamma distribution, which can be written in the following factored
form.

P(~β, σ|~y,X) = P(~β|σ, ~y,X)P(σ|~y,X),

= N(~β|β̂, σ2(Xᵀ
X)−1)× invGamma(σ2|n−K−1

2 , (n−K−1)σ̂2

2 ).

An interesting consequence of this distribution is when we marginalize over the σ2, this leads to a multivariate
t distribution with location parameter β̂, scale parameter σ̂2(Xᵀ

X)−1, and degrees of freedom n−K − 1:

P(~β|~y,X) ∼ tn−K−1(~β|β̂, σ̂2(Xᵀ
X)−1).

From this, for any βk, we have

P(βk|~y,X) ∼ tn−K−1(βk|β̂k, σ̂2(Xᵀ
X)−1

kk
).

In other words, the posterior distribution of βk is a (non standard) t-distribution with degrees of freedom of
n−K−1, mean β̂k and scale parameter σ̂2(Xᵀ

X)−1
kk

. This entails, amongst other things, that the probability,
according to the posterior distribution, that βk is in the range

β̂k ± τ(1−ε,n−K−1)σ̂

√
(Xᵀ

X)−1
kk
,

4It should be noted that this is an improper prior, which means that it does not have a finite value for its integral.
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is 1 − 2ε. Note that here, τ(1−ε,n−K−1) is the inverse cumulative distribution function of a standard t-
distribution, as defined above. This gives us the high posterior density (hpd) interval for βk. Setting
ε = 0.025, for example, gives us the 95% hpd interval. In other words, according to the posterior distribution,
there is a 95% probability that βk is in the range β̂k ± τ(0.975,n−K−1)σ̂

√
(Xᵀ

X)−1
kk

. What is particularly
interesting about this result is that it is identical to the 95% confidence interval for βk defined above.

In Bayesian approaches in general, as we will see repeatedly below, a common focus of interest is the posterior
predictive distribution. In normal linear models, this is defined as follows:

P(yι|xι, ~y,X) =
∫

P(yι|xι, ~β, σ2) P(~β, σ2|, ~y,X)︸ ︷︷ ︸
posterior

d~βdσ2.

The first term in the integral is the probability distribution over the outcome variable given that the predictor
takes the value xι, and given known values of ~β and σ2. This, of course, is a normal distribution centred at
xι~β and whose standard deviation is σ. This integral simplifies to the following

P(yι|xι, ~y,X) ∼ tn−K−1

(
xι~β|σ̂2(1 + xι(X

ᵀ
X)−1

xᵀι )
)
.

This entails that the 1− 2ε density interval for predicted value of yι is the following range.

xι~β ± τ(1−ε,n−K−1)σ̂

√
1 + xι(X

ᵀ
X)−1

xᵀι .

This interval is identical to prediction interval for yι that we defined above.

Monte Carlo approaches
As mentioned, in situations where a closed form expression for the posterior distribution is not available, we
may use Monte Carlo methods to draw samples from this distribution. Even though, as we have seen, we can
obtain a closed form expression for the normal linear model, it is still useful and informative to use Monte
Carlo methods, especially because there is excellent general purpose software for doing so. In particular, here
we will use the brms (Bayesian regression modelling using Stan) package, which is an R based regression
modelling interface to the general purpose Bayesian probabilistic modelling language Stan.

The main command in the brms package is brm. When used for normal linear models, assuming we accept all
the default setting, the usage of this command is identical to that of lm.

library(brms)
M_bayes <- brm(weight ~ height + age, data = weight_male_df)

We can view the results of this analysis using the generic summary function.

summary(M_bayes)
#> Family: gaussian
#> Links: mu = identity; sigma = identity
#> Formula: weight ~ height + age
#> Data: weight_male_df (Number of observations: 4082)
#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
#> total post-warmup samples = 4000
#>
#> Population-Level Effects:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> Intercept -97.86 4.82 -107.42 -88.43 1.00 4729 3028
#> height 0.98 0.03 0.92 1.03 1.00 4687 2883
#> age 0.38 0.02 0.34 0.43 1.00 4494 3133
#>
#> Family Specific Parameters:
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#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> sigma 12.10 0.13 11.85 12.37 1.00 5053 2993
#>
#> Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
#> and Tail_ESS are effective sample size measures, and Rhat is the potential
#> scale reduction factor on split chains (at convergence, Rhat = 1).

There is a lot information in this output, and we will not focus on all of it immediately. Let us begin by
noting that it tells us that we drew 1000 samples from 4 independent chains, each one drawing samples from
the same posterior distribution. Thus, for each of the three coefficients and for the standard deviation, we
represent the posterior by a set of 4000 samples.

Let us now look at the first few columns of the coefficients table, which is listed in the summary output under
Population-Level Effects.

summary(M_bayes)$fixed[,1:4] %>%
print(digits = 2)

#> Estimate Est.Error l-95% CI u-95% CI
#> Intercept -97.86 4.824 -107.42 -88.43
#> height 0.98 0.027 0.92 1.03
#> age 0.38 0.021 0.34 0.43

The values listed under Estimate and Est.Error are the means and the standard deviations, respectively, of
the posterior distributions for the three coefficients. The remaining two columns give us the lower and upper
bounds, respectively of the high posterior density interval.

Compare these results to the maximum likelihood estimates, standard errors, and 95% confidence intervals
from the lm model.

cbind(summary(M)$coefficients[,1:2],
confint(M)

) %>% print(digits = 2)
#> Estimate Std. Error 2.5 % 97.5 %
#> (Intercept) -97.97 4.906 -107.59 -88.35
#> height 0.98 0.028 0.92 1.03
#> age 0.38 0.021 0.34 0.43

Clearly, these results are remarkably similar, and any minor differences that are there may in fact be due to
the sampling variation.

In Figure 5, we plot the density functions and the trace plots of the samples for each of the four unknown
variables. The density plots are essentially smoothed histograms of the samples. The trace plots plot the
trajectory of the samples from each chain for each variable.

plot(M_bayes)

These trace plots can tell us whether the four chains are sampling over time from the same areas of space. If
they are, then the trace plots should appear like a “hairy caterpillar”, with the traces of each chain being on
top of one another.

When we represent a posterior distribution using samples, the posterior predictive distribution is calculated
as follows ∫

P(yι|xι, ~β, σ2)P(~β, σ2|~y,X)d~βσ2 ≈ 1
J

J∑
j=1

P(yι|xι, β̃j , σ̃2
j ),

where {β̃j , σ̃2
j }Jj=1 are the J samples from the posterior distribution.

Using the weight_male_df_new data that we also used above, with the brm object, we can calculate this
posterior predictive distribution as follows.
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Figure 5: Density plots and trace plots of the posterior distribution of each of the three coefficients and σ.

predict(M_bayes, newdata = weight_male_df_new)
#> Estimate Est.Error Q2.5 Q97.5
#> [1,] 86.62025 12.02946 63.45649 110.5325

Note how this is almost identical to the prediction interval calculated using classical methods.

predict(M, newdata = weight_male_df_new, interval = 'prediction')
#> fit lwr upr
#> 1 86.77874 63.05787 110.4996

Categorical predictor variables
Thus far, we have only considered predictor or explanatory variables that are continuous, like height or age.
The important feature of these variables is that they are defined on a metric space, and we assume that
the average of the outcome variable changes by a constant proportion of any change of each predictor. Of
course, some potentially important explanatory variables are not continuous, or are not defined on a metric
space, but have categorically distinct values. For these variables, we assume that changing from one of these
categorically distinct values to another corresponds to a constant change in the average of the outcome
variable.

As a simple example, again using weight as our outcome variable, we could have a single explanatory variable
gender, which takes on two categorically distinct values: male, female. In Figure 6a, we show the density
plots for the weights of both males and females. When modelling weight in a normal linear model with
gender as a explanatory variable, for each of its two discrete and categorically distinct values, we assume
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Figure 6: a) Density plots of the weights of males and females. b) Density plots of the weights of males and
females for each of the different quintiles of height (across both males and females).

that weight is normally distributed. In other words, we assume the distribution of weight for males and
also for females is a normal distribution. We assume that these distributions have different means, but that
their standard deviations are identical. Using binary valued categorical predictor variables in a normal linear
model is, as we will see, easily accomplished by coding the two values as 0 and the other as 1, and then
treating the resulting coding variable as a normal numerical predictor variable.

When using lm, we can simply use the categorical variable in the formula for lm just as we would any other
variable. For example, in the following code, we model the distribution of weight as before, but now model
how its distribution varies by gender.

M_gender <- lm(weight ~ gender, data = weight_df)

The variable gender has values male and female. When used in lm, one of these is recoded as 0 and the
other as 1. Which one is coded as 0 or 1 is completely arbitrary and ultimately makes no difference to the
model. Nonetheless, we do have to know which is coded as 0 and 1 in order to be able to interpret the model.
In R, we can always control how categorical variables are coded, but by default, the value that is listed first
alphabetically is coded by 0. In the case of gender, this means female is coded as 0 and male as 1. The
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model above then is equivalent to the following.

yi ∼ N(µi, σ2), µi = β0 + β1xi, for i ∈ 1 . . . n,

where xi = 0 if person i is female and xi = 1 if person i is male. Put another way, we create variables
x1, x2 . . . xn defined as follows

xi =
{

0, if genderi = female
1, if genderi = male

Let us look at the coefficients.

coef(M_gender)
#> (Intercept) gendermale
#> 67.75821 17.76575

As we can see, the intercept term has a value of 67.76, and the second coefficient is 17.77. The intercept term
β0 is, by definition, the average of the distribution of weight when the predictor variable takes a value of 0.
In this case, xi takes a value of 0 whenever genderi is female. As such, the intercept term is the average of
the distribution of weights for females. On the other hand, the average of the distribution of weight for males
is equal to the the value of µi when xi = 1, which is β0 + β1 · 1 = β0 + β1. This entails that β1 gives the
difference in the average of the distribution of weight for females and males.

We can therefore also write this model as follows.

yi ∼ N(µi, σ2), µi =
{
β0, if genderi = female
β0 + β1, if genderi = male

.

Note that this model is identical to an independent samples t-test. In that model, we assume we have two
groups of independent observations. Each group is assumed to be drawn from a normal distribution, and the
two distributions are assumed to have identical standard deviations. The null hypothesis test in the t-test is
that the means of these two distributions are identical. This is identical to a null hypothesis test that β1 = 0
in the above linear model. This is zero if and only if the mean of the males and the mean of the females are
identical.

When we include gender as a explanatory variable in addition to a continuous predictor variable, like height
for example, we are dealing with a situation like that shown in Figure 6b. Using a linear model for this
situation, we assume that for both males and females, the average of the weight distribution changes as a
constant proportion of height. More precisely, the model is as follows.

yi ∼ N(µi, σ2), µi = β0 + β1x1i + β2x2i, for i ∈ 1 . . . n,

where x1i is the height of person i, and

x2i =
{

0, if genderi = male
1, if genderi = female

.

To implement this model using lm we would do the following.

M_gender_height <- lm(weight ~ height + gender, data = weight_df)
coef(M_gender_height)
#> (Intercept) height gendermale
#> -87.7293652 0.9548058 5.5689395

Using the same reasoning as above, given that x2i takes that value of 0 when the gender is female and takes
the value of 1 when gender is male, this model can be written as follows.

yi ∼ N(µi, σ2), µi =
{
β0 + β1x1i, if genderi = female
β0 + β1x1i + β2, if genderi = male

.
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This is identical to a varying intercept model. In particular, we have two linear models, one for males and
one for females. The slopes for these two models are the same, namely β1, but the intercepts are different.
The intercept for the females is β0, and the intercept for the males is β0 + β1.

To make the values of the coefficients somewhat easier to interpret, let us subtract an arbitrary constant
from the height variable and rerun the analysis.

weight_df %>%
mutate(height = height - 150) %>%
lm(weight ~ height + gender, data = .) %>%
coef()

#> (Intercept) height gendermale
#> 55.4915013 0.9548058 5.5689395

This tells us that the distribution of weight of females with a height of exactly 150cm has an average value
of 55.49. For males on the other hand, the distribution of their weights is centred at 55.49 + 5.57, which
is 61.06. For any given height, the average of the distribution of weights for males is greater than that of
females by 5.57. But for both males and females, according to this model, the average of the distribution of
weight increases by 0.95 for every change by 1cm in height.

In linear models, we can also use categorical predictor variables that have more than two levels. Consider, for
example, the variable race. This has 7 distinct values in the original weight_df data set. Some of these
values have very few corresponding observations, so therefore for simplicity, we will limit the observations to
just those where the values of race are white, black, or hispanic.

weight_df_2 <- weight_df %>%
filter(race %in% c('white', 'black', 'hispanic'))

We may easily include race as a predictor in a lm model. When used on its own, for example, this would
effectively model the distribution of weight as a normal distribution for each of the white, black, and
hispanic people. Unlike in the case of a variable with two values, however, we can use a single coding
variable. For example, while we could code female and male by xi = 0 and xi = 1, respectively, we can not
code white, black, hispanic by xi = 0, xi = 1, xi = 2. To do so would entail that race is variable on a
metric space and that white, black, and hispanic are ordered and equidistant positions in this space. This
would mean that, amongst other things, the difference in the average heights of white and black would be
exact the same as the average difference in height of black and hispanic.

To deal with categorical variables with more than two levels we use dummy codes. In a dummy code, one
value of the variable is chosen as the base level. If this variable has three values, then the base level has the
dummy code of 0, 0. On of the remaining values is dummy coded as 0, 1, and the final one is coded as 1, 0.
Which value is coded using which code is arbitrary, but by default with R, the alphabetically first value is
the base level.

Using race as our single categorical predictor variable, the linear model would be as follows.

yi ∼ N(µi, σ2), µi = β0 + β1x1i + β2x2i, for i ∈ 1 . . . n,

where x1i, x2i are as follows

x1i, x2i =


0, 0 if racei = black
1, 0 if racei = hispanic
0, 1 if racei = white

.

Using lm, we would simply do as follows.

M_race <- lm(weight ~ race, data = weight_df_2)
coef(M_race)
#> (Intercept) racehispanic racewhite
#> 78.672958 -1.655727 2.464647
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The intercept term is, as always, the predicted mean of the outcome variable when the predictors are equal
to zero. In this case, both predictors are zero if and only if the race of the observation is black. Thus, the
predicted average of the distribution of weight when race is black is 78.67.

On the other hand, when the race of the observable is hispanic, then the dummy code is x1i = 1, x2i = 0.
Therefore, the predicted mean of the weight distribution for Hispanics is

78.67 +−1.66× 1 + 2.46× 0 = 77.02.

From this, we see that -1.66 is the difference in the average of the distribution of weight between the black
and the hispanic race categories.

Finally, when the race is white, then the dummy code is x1i = 0, x2i = 1. Therefore, the predicted mean of
the weight distribution for whites is

78.67 +−1.66× 0 + 2.46× 1 = 81.14.

From this, we see that 2.46 is the difference in the average of the distribution of weight between the black
and the white race categories.

This linear model is identical to a oneway Anova. In the oneway Anova, we have J distinct groups and
have independent observations from each one. We assume that these J groups can be each modelled as
normal distributions, whose means differ, but who have a common standard deviation. This is precisely the
model assumed when using lm as above. Moreover, the null hypothesis test that β1 = β2 = 0 in the model
above is exactly the same as the null hypothesis, as in the one Anova, that the mean weights of all three
race groups are the same. Using the lm model, the F statistic for the null hypothesis that β1 = β2 = 0 is
F (2, 5766) = 27.33 (to two decimal places). The corresponding Anova table can be obtained as follows.

#> Analysis of Variance Table
#>
#> Response: weight
#> Df Sum Sq Mean Sq F value Pr(>F)
#> race 2 13179 6589.4 27.327 1.541e-12 ***
#> Residuals 5766 1390348 241.1
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If we use aov to perform a standard oneway Anova with this data set, we see that its null hypothesis test is
identical to this.

aov(weight ~ race, data = weight_df_2) %>%
summary()

#> Df Sum Sq Mean Sq F value Pr(>F)
#> race 2 13179 6589 27.33 1.54e-12 ***
#> Residuals 5766 1390348 241
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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