
Chapter 10: Logistic Regression

Mark Andrews

Contents
Introduction 1

Binary logistic regression 2
Maximum likelihood estimation . 7
Binary logistic regression using R . 8
Predictions in binary logistic regression . 9
Risk ratios and odds ratios . 11
Model comparison . 13
Bayesian approaches to logistic regression . 15
Latent variable formulation . 17
Probit regression . 19

Ordinal logistic regression 21
Ordinal logistic regression in R . 24
Odds ratios . 25
Bayesian ordinal logistic regression . 26

Categorical (multinomial) logistic regression 26
Categorical logistic regression using R . 27
Bayesian categorical logistic regression . 30

References 31

Introduction
The normal linear model that we described in Chapter 9 models an outcome variable as a normal distribution
whose mean varies as a linear function of a set of predictors. As useful and important as this model is, it is
clearly limited in that it can only be applied to data that is both continuous and has a roughly (conditionally)
normal distribution. That unquestionably excludes variables that are categorical, or other variables like count
variables. We can, however, make relatively simple extensions to the normal linear model to produce a class
of regression models that work in many respects just like the normal linear models but are applicable to data
sets characterized by different types of outcomes variables such as categorical or count variables. These are
known as the generalized linear models. In this chapter, we will focus on a class of models known as the
logistic regression models. These are some of the most of the widely used examples of the generalized linear
models. In the next chapter, we will cover some of the other major types of generalized linear models.

Perhaps the single most common type of logistic regression is binary logistic regression, which we will cover
here first. Other types of logistic regression, which are fundamentally related to binary logistic regression
include ordinal logistic regression and categorical (or multinomial) logistic regression, and we will also cover
these models is this chapter.

1

Binary logistic regression
Let use assume, as we did with the normal linear model, that we have n independent observations, that can
be represented as the n pairs

(y1, ~x1), (y2, ~x2) . . . (yi, ~xi) . . . (yn, ~xn).

Here, just as before, in each observation, the yi is the observed value of a univariate outcome variable, and
this is the variable which we are hoping to predict or explain. Also as before, each ~xi is a row vector of
values of a set of K predictor or explanatory variables that can predict or explain the value of the outcome
variable. Now consider the situation where the outcome variable is binary variable. Any binary variable’s
values can be represented, without loss of generality, as {0, 1}. In other words, no matter what the actual
values, e.g. {no, yes}, {false, true}, etc., we can always represent these by {0, 1}. If the outcome variable
is a binary variable, we simply can not use the normal linear model here. To do so would make the highly
implausible claim that each value of yi, which is always either 0 or 1, was drawn from a normal distribution.
Because the normal distribution is a unimodal, symmetric and continuous distribution, it can not be used as
a probability distribution over the discrete values {0, 1}.

A suitable distribution for a binary valued random variable x is a Bernoulli distribution, an example of which
we depict in Figure 1. A Bernoulli distribution is an extremely simple distribution. It has a single parameter,
which we will denote by θ. This θ gives the probability that x takes the value of 1. In other words,

P(x = 1) .= θ,

and so the probability that x takes the value of 0, given that P(x = 0) = 1− P(x = 1), is 1− θ.

0 1
0

0.2

0.4

0.6

p

1− θ

θ

Pr
ob

ab
ili
ty

Figure 1: A Bernoulli distribution with parameter θ. The parameter θ gives the probability that the
binary variable takes the value of 1. In other words, if x is a binary variable, P(x = 1) = θ, and so
P(x = 0) = 1− P(x = 1) = 1− θ.

We can therefore begin to extend the normal linear model by exchanging the normal distribution of the
outcome variable for a Bernoulli distribution:

yi ∼ Bernoulli(θi), for i ∈ 1 . . . n.

In the case of the normal linear model, we had each yi ∼ N(µi, σ2) and each µi being a linear function of ~xi,
i.e. µi = β0 +

∑K
k=1 βkxki. In the case of the Bernoulli distribution, however, we can not have each θi being

a linear function of ~xi because each θi is constrained to take values between 0 and 1, and in general, if we
allow θi to be a linear function of ~xi, we can not guarantee that it will be constrained to the interval (0, 1).
In order to deal with this issue, we can transform θi to another variable φi that can take on any value on the
real line R between −∞ and ∞ and then treat φi as the linear function of ~xi. For this, we need an invertible

2

function f : (0, 1) 7→ R that can map any value of θi to a unique value of φ, and vice versa. This function f is
known as a link function, and it is a defining feature of a generalized linear model.

Our model extended model now is the following:

yi ∼ Bernoulli(θi), θi = f−1(φi), φi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

Compare this model to the original normal linear model, i.e.

yi ∼ N(µi, σ2), µi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

There are two key differences here. First, the outcome variable’s distribution is the normal distribution in
the normal linear model, while it is the Bernoulli distribution for the case of binary outcome variable model.
Second, in the normal linear model, the location parameter µi is a linear function of ~xi, while in the case of
the binary outcome variable model, it is a transformation of the location parameter θi, rather than θi itself,
that is the linear function of ~xi.

There are endless possibilities for the link function f , but the default choice, and in fact the defining choice
for the binary logistic regression model is the log odds, otherwise known as the logit, function. The logit
function is defined as

φ = f(θ) = logit(θ) = loge
(

θ

1− θ

)
.

In other words, this function takes a value θ ∈ (0, 1) and divides it by 1− θ, and then calculates the natural
logarithm1 of this function. The term θ

1−θ , when θ is assumed to be a probability, is known the odds of θ.
Hence, the logit is simply the natural logarithm of the odds of θ. The logit function is invertible:

θ = f−1(φ) = ilogit(φ) = 1
1 + e−φ

.

This function is usually known as the inverse logit, hence ilogit, function. The logit and the inverse logit
functions are shown in Figure 2a and Figure 2b, respectively.

The binary logistic regression model is therefore defined exactly as follows.

yi ∼ Bernoulli(θi), θi = ilogit(φi), φi = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

This can be written identically but in a more succinct manner as follows.

yi ∼ Bernoulli(θi), logit (θi) = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

As an example of a binary logistic regression, let us look at a data set concerning extra marital affairs. This
data set was conducted by the magazine Psychology Today and described in its July 1969 issue, and is
described in more detail in Fair (1978).

affairs_df <- read_csv('data/affairs.csv')

It has 601 observations for 9 variables. One of these 9 variables is affairs, which gives the number of times
the respondent to the survey engaged in an extramarital act of sexual intercourse in the past year. The
distribution of values of the affairs variable are as follows.

1Note that the natural logarithm is the logarithm to base e ≈ 2.7183, hence we write it as loge. It is common to see this also
written as ln. Because the natural logarithm is probably the most used logarithm base in statistics, we will usually denote it
simply as log without explicitly stating the base.

3

−4

0

4

0.00 0.25 0.50 0.75 1.00
θ

φ
a

0.00

0.25

0.50

0.75

1.00

−4 0 4
φ

θ

b

Figure 2: (a) The log odds, also known as the logit, function that maps the interval (0, 1) to R. (b) The
inverse of the log odds, also known as the inverse logit, function that maps R to the interval (0, 1).

affairs_df %>%
pull(affairs) %>%
table()

#> .
#> 0 1 2 3 7 12
#> 451 34 17 19 42 38

Here, the values of 0, 1, 2, and 3 indicate exactly 0, 1, 2, and 3 times, while 7 indicates 4-10 times, and 12
indicates monthly or weekly or daily. To simplify matters, we will create a new variable cheater that takes
the value of TRUE if the respondent engaged in any amount of extramarital sexual intercourse, and FALSE
otherwise.

library(magrittr)
affairs_df %<>% mutate(cheater = affairs > 0)

This variable, which is obviously binary, will be our outcome variable. Other variables, which can serve as
explanatory variables, include gender and rating. The rating variable has values of 1 to 5 that mean the
following: 1 = very unhappy, 2 = somewhat unhappy, 3 = average, 4 = happier than average, 5 = very happy.
In Figure 3 a-c, we show the proportion of people who cheat by a) gender b) marriage rating and c) marriage
rating and gender.

We can understand binary logistic regression in a manner directly analogous to normal linear regression.
Recall from Chapter 9 that we said that normal linear regression models the outcome variable as a normal
distribution whose mean varies as we change the values of the predictor variables. In binary logistic regression,
we model the outcome variable as a Bernoulli distribution whose parameter, which gives the probability of
one of the two outcomes, varies as we change the values of the predictor variables. For example, consider
Figure 3a. As we change gender from female to male, the proportion of those who have had affairs increases
from 0.23 to 0.27. Similarly, as we see in Figure 3b, as rating increases, the proportion of people cheating
declines. Likewise in Figure 3c, for females and males separately, as rating increases, the proportion of
people cheating declines, but for the most part, for any given value of rating, the proportion of males who
cheat is greater than the number of females who cheat. As we will see, we can model these changes in the
probability of cheating as a function of predictors using a binary logistic regression analogously to how we
could model changes in a normally distributed outcome variable as a function of predictors using normal

4

0.00

0.25

0.50

0.75

1.00

female male
gender

co
un

t
a

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
rating

co
un

t

b

female male

1 2 3 4 5 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

rating

co
un

t cheater

FALSE

TRUE

Figure 3: Each bar in each plot shows the proportion of people in the relevant group who have had an affair
or not in the past year. (a) The proportions for female and males. (b) The proportions according to the
rating of the happiness of the marriage. (c) The proportions according to the marriage rating for females and
males.

linear regression.

One of the key differences between normal linear and binary logistic regression models, as we have mentioned,
is that while in normal linear models we model the location parameter of outcome variable as a linear function
of the predictors, in binary logistic regression, we model the log odds of the location parameter of the outcome
variable as a linear function of the predictors. In other words, in binary logistic regression, as predictor
variable k changes by ∆k, we assume the log odds of the probability of the outcome variable changes by βk∆k,
where βk is the coefficient for predictor k. In Figure 4a, we plot the proportion of cheaters as a function
of the marriage rating level, and in Figure 4b, we plot the log odds of this proportion as a function of the
marriage rating level.

Using the affairs_df data, we can model changes in the probability of cheating as a function of gender or
rating or both gender and rating using a binary logistic regression as follows. When using gender as a
predictor, our model would be as follows.

yi ∼ Bernoulli(θi), θi = ilogit(φi), φi = β0 + β1x1i, for i ∈ 1 . . . n,

or equivalently,
yi ∼ Bernoulli(θi), logit(θi) = β0 + β1x1i, for i ∈ 1 . . . n,

where x1i indicates if person i is a male or female by x1i = 1 if genderi is male and x1i = 0 if person
genderi is female. Once we have inferred the value of β0 and β1, and we will describe how to do so below,
ilogit(β0 + β1 × 0) = ilogit(β0) will give us the estimate of the probability that a female will have an affair,

5

0.2

0.3

0.4

0.5

1 2 3 4 5
rating

p
a

−1.5

−1.0

−0.5

0.0

1 2 3 4 5
rating

lo
gi

t(
p)

b

Figure 4: (a) The proportion of cheaters as a function of the marriage rating. (b) The log odds of the
proportion of cheaters as a function of the marriage rating.

while ilogit(β0 + β1 × 1) = ilogit(β0 + β1) will give us the estimate of the probability that a male will have an
affair. Equivalently, β0 is the estimate of the log odds that a female will have an affair, while β0 + β1 is the
estimate of the log odds that a male will have an affair. This means that β1 is the difference in the log odds
of having an affair between males and females. As we will discuss in more detail below, this also entails that
eβ1 is the odds-ratio of having an affair between males and females.

If we wish to model how the probability of having an affair varies by the rating variable, our model could be
the following

yi ∼ Bernoulli(θi), θi = ilogit(φi), φi = β0 + β2x2i, for i ∈ 1 . . . n,

which is equivalent to

yi ∼ Bernoulli(θi), logit(θi) = β0 + β2x2i, for i ∈ 1 . . . n,

where x2i ∈ {1, 2, 3, 4, 5} is the rating of the happiness of the marriage by person i. Here, we are explicitly
assuming that the log odds of having an affair varies linearly with a change in the value of rating. In
other words, we assume that the log odds of having an affair changes by β2 whenever rating changes by
one unit, regardless if it changes from 1 to 2, 2 to 3, 3 to 4, or 4 to 5. That the log odds changes by this
constant amount whenever rating changes by one unit is not strictly necessary, nor is it beyond dispute in
this data set as we can see from Figure 4b. However, this assumption is a standard one, and to go beyond
this assumption would require a nonlinear extension to the logistic regression, which is something we will not
consider in this chapter.

Modelling how the probability of having an affair varies with gender and rating, assuming no interaction
between these two variables, could be done with the following model

yi ∼ Bernoulli(θi), θi = ilogit(φi), φi = β0 + β1x1i + β2x2i, for i ∈ 1 . . . n,

which is equivalent to

yi ∼ Bernoulli(θi), logit(θi) = β0 + β1x1i + β2x2i, for i ∈ 1 . . . n,

where x1i and x2i are as above. We interpret this model similarly to the two previous ones with the exception
that now β1 is the change in the log odds of having an affair as we go from females to males assuming that

6

the value of rating is held constant. In other words, assuming that rating has any given value, as the log
odds of having an affair changes by β1 as we go from females to males. Likewise, holding gender constant, if
rating increases by one unit, then the log odds of having an affair changes by β2.

Maximum likelihood estimation
Like in normal linear regression, we can estimate the values of the unknown variables in the model, namely
β0, β1 . . . βK using maximum likelihood estimation. Unlike in the case of normal linear models, however, there
is no closed form solution to the obtaining the maximum likelihood estimates. In other words, we can not
simply solve for β0, β1 . . . βK to find the values that maximize the likelihood function. Alternative, numerical
methods to obtaining the maximum likelihood estimates are therefore used.

The likelihood function can be

P(~y|X, ~β) =
n∏
i=1

P(yi|~xi, β),

=
n∏
i=1

θyii (1− θi)1−yi ,

where ~y = [y1, y2 . . . yn]ᵀ, ~β = [β0, β1 . . . βK]ᵀ, X is a matrix of n stacked row vectors ~1, ~x1, ~x2 . . . ~xn, where ~1
is a row of K + 1 ones, and θi = ilogit(X~β). The logarithm of the likelihood is

logL(~β|~y,X) = log P(~y|X, ~β),

=
n∑
i=1

yi log(θi) + (1− yi) log(1− θi).

Although this is clearly a function of ~β, we can not, as we did in the case of normal linear models, simply
calculate its gradient with respect to ~β and set it to zero and solve for ~β. However, logL(~β|~y,X) is a convex
function and has a global maximum , and hence we may use numerical optimization methods to find this
global maximum. Relatively simple methods to maximize this function include gradient descent methods that
choose an arbitrary starting value for ~β, calculate the gradient of the function at this point, and then choose
the next value of ~β by adding to it a constant times the gradient vector. More computationally efficient and
effective methods include using Newton’s method for root find applied to the derivative of the log of the
likelihood function. When applied to binary logistic regression, this is known as iteratively reweighted least
squares (see Murphy 2012 for details). Specifically, we start with an arbitrary starting value for ~β, which we
will call ~β0, and then for t ∈ 0, 1, 2 . . ., we update our estimate of ~β using the following update rule until the
estimate converges:

~βt+1 = (Xᵀ
StX)−1

X
ᵀ(StX~βt + ~y − ~θt).

Here, St is a n × n diagonal matrix whose value at the ith element of the diagonal is θti(1 − θti), where
θti = ilogit(X~βt), and ~θt = [θt1, θt2 . . . θtn]ᵀ.

As before, we will denote the maximum likelihood estimator of ~β by β̂. It can be shown that the sampling
distribution of β̂ is distributed asymptotically as follows:

β̂ ∼ N(~β, (Xᵀ
StX)−1).

This result is very similar, though not identical, to the sampling distribution of β̂ in the case of the normal
linear model. Using this result, the sampling distribution for any particular coefficient is

β̂k ∼ N(βk, (X
ᵀ
StX)−1

kk
),

which entails that
β̂k − βk√

(Xᵀ
StX)−1

kk

∼ N(0, 1),

where
√

(Xᵀ
StX)−1

kk
is the standard error term.

7

Binary logistic regression using R
Using R, we can implement a binary logistic regression using the glm function. The glm function is used
almost identically to how we used lm, but because it is for different types of generalized linear models and not
just the binary logistic regression model, we must specify both the outcome variable probability distribution
that we assume and also the link function.

When applied to the affairs_df problem, using gender and rating as the predictor variables, we implement
the binary logistic regression in R as follows.

affairs_m <- glm(cheater ~ gender + rating,
family = binomial(link = 'logit'),
data = affairs_df)

As we can see, the way we use glm is almost identical to how we used lm, but we have to use a new argument,
family, to specify the outcome distribution and link function. Given that the outcome variable’s probability
distribution is a Bernoulli distribution, it may seem unexpected to see that we state here that it is binomial
distribution. However, the binomial distribution is in fact a generalization of the Bernoulli distribution; a
binomial distribution when the number of observations is 1 is exactly the Bernoulli distribution. As such, it
is technically correct to say that a binary variable has a binomial distribution. Note that we state the link
function link = 'logit' inside binomial(). The logit link function is the default so we could simply write
family = binomial().

Just like with lm, we may see the maximum likelihood estimates of β0, β1, β2 with the coef() function.

(estimates <- coef(affairs_m))
#> (Intercept) gendermale rating
#> 0.7093252 0.2547430 -0.5108324

From this, for example, we see that difference in the log odds of having an affair between males and females,
assuming that rating is held constant at any value, is 0.255. Likewise, assuming gender is held constant,
as we increase rating by one unit, the log odds of having an affair decreases by 0.511 (in other words, it
increases by -0.511). The trouble with these statements about the coefficient is that they won’t make much
intuitive sense for those not used to thinking in terms of log odds. We will return to consider some alternative
explanations of these coefficients below after we have considered predictions in logistic regression.

Let us now turn to hypothesis tests and confidence intervals for these coefficients. We may see the relevant
information as follows.

summary(affairs_m)$coefficients
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.7093252 0.33745388 2.101992 3.555402e-02
#> gendermale 0.2547430 0.19540750 1.303650 1.923529e-01
#> rating -0.5108324 0.08495009 -6.013324 1.817574e-09

The standard error for each coefficient k is, as described above, ŝek =
√

(Xᵀ
StX)−1

kk
. We can confirm this

easily similarly to how we did in the case of normal linear models.

library(modelr)

X <- model_matrix(affairs_df, cheater ~ gender + rating) %>%
as.matrix()

p <- affairs_m$fitted.values
S <- diag(p * (1 - p))

(std_err <- solve(t(X) %*% S %*% X) %>% diag() %>% sqrt())
#> (Intercept) gendermale rating
#> 0.33745388 0.19540750 0.08495009

8

Note that affairs_m$fitted.values gives the values of ~θ as defined above.

In the table above, the z value is the test statistics for the null hypothesis tests that the true values of
each βk are zero. In other words, it is β̂k/ŝek, as can be easily verified. The accompanying p-value, listed as
Pr(>|z|), is the probability of getting a result more extreme than the test statistic in a standard normal
distribution.

z <- summary(affairs_m)$coefficients[,'z value']
2 * pnorm(abs(z), lower.tail = F)
#> (Intercept) gendermale rating
#> 3.555402e-02 1.923529e-01 1.817574e-09

The confidence intervals for the coefficients can be obtained as follows.

confint.default(affairs_m)
#> 2.5 % 97.5 %
#> (Intercept) 0.04792776 1.3707227
#> gendermale -0.12824866 0.6377347
#> rating -0.67733153 -0.3443333

We can confirm that for each coefficient βk, this is β̂k ± ŝek · ζ(0.975), where ζ(0.975) is the value below which
lies 97.5% of the probability mass in a standard normal distribution. For example, for the case of gender, we
have

estimates['gendermale'] + c(-1, 1) * std_err['gendermale'] * qnorm(0.975)
#> [1] -0.1282487 0.6377347

Predictions in binary logistic regression
Given β̂, we can easily make predictions based on any given values of our predictors. In general, if ~xι is a
vector of values of the predictor variables that we wish to make predictions about, the predicted log odds
corresponding to ~xι is simply

φι = ~xιβ̂,

and so the predicted probability of the outcome variable, which is the predicted values of the parameters of
the Bernoulli distribution of the outcome variable, is

θι = 1
1 + e−φι

.

For example, the predicted log odds of having an affair for a male with a rating value of 4 is as follows:

predicted_logodds <-
(estimates['(Intercept)'] + estimates['gendermale'] * 1 + estimates['rating'] * 4) %>%
unname()

predicted_logodds
#> [1] -1.079261

If we then want the predicted probability, we use the inverse logit function. While this function does exist in
R as the plogis function, it is nonetheless instructive to implement ourselves as it is a very simple function.

ilogit <- function(phi){
1/(1 + exp(-phi))

}

Using this function, the predicted probability is as follows:

ilogit(predicted_logodds)
#> [1] 0.2536458

9

Doing predictions in logistic regression as we have just done is instructive but becomes tedious and error
prone for all but very simple calculations. Instead, we should use the generic predict function as we did in
the case of lm. For this, we must first set up a data frame with the same variables as are the predictors in
the model and whose values are the values we want to make predictions about. For example, if we want to
see the predictions for both females and males at all values of the rating variable, we can set up the data
frame using expand_grid, which will give us all combinations of the values of the two variables.

affairs_df_new <- expand_grid(gender = c('female', 'male'),
rating = seq(5)

)

We can now make predictions as follows.

predict(affairs_m, newdata = affairs_df_new)
#> 1 2 3 4 5 6
#> 0.19849280 -0.31233961 -0.82317202 -1.33400444 -1.84483685 0.45323579
#> 7 8 9 10
#> -0.05759662 -0.56842903 -1.07926144 -1.59009385

By default, this gives us the predicted log odds. We can get the predicted probabilities easily in one of two
ways. First, we can pipe the predicted log odds to ilogit.

predict(affairs_m, newdata = affairs_df_new) %>% ilogit()
#> 1 2 3 4 5 6 7 8
#> 0.5494609 0.4225438 0.3050907 0.2084978 0.1364803 0.6114083 0.4856048 0.3615994
#> 9 10
#> 0.2536458 0.1693707

Alternatively, we can use the type = 'response' argument with predict.

predict(affairs_m, newdata = affairs_df_new, type = 'response')
#> 1 2 3 4 5 6 7 8
#> 0.5494609 0.4225438 0.3050907 0.2084978 0.1364803 0.6114083 0.4856048 0.3615994
#> 9 10
#> 0.2536458 0.1693707

As we have seen elsewhere, it is useful to use the modelr::add_predictions function to return these
predictions as new variables in the data frame we are making predictions with.

affairs_df_new %>%
add_predictions(affairs_m, type='response')

#> # A tibble: 10 x 3
#> gender rating pred
#> <chr> <int> <dbl>
#> 1 female 1 0.549
#> 2 female 2 0.423
#> 3 female 3 0.305
#> 4 female 4 0.208
#> 5 female 5 0.136
#> 6 male 1 0.611
#> 7 male 2 0.486
#> 8 male 3 0.362
#> 9 male 4 0.254
#> 10 male 5 0.169

Above, we established that the estimator β̂ has the following asymptotic sampling distribution:

β̂ ∼ N(~β, (Xᵀ
SX)−1)

10

Given that the predicted log odds φι is ~xιβ̂, the sampling distribution of φι is as follows.

φι ∼ N(~xιβ̂, ~xι(X
ᵀ
SX)−1~x

ᵀ

ι︸ ︷︷ ︸
ŝe2
ι

).

From this, the 95% confidence interval on the true value of φι will be

φι ± ŝeι · ζ(0.975).

Unlike in the case of lm, there is no option for the predict function to return this confidence interval directly.
However, it will return the standard errors, and from this, we can calculate the confidence intervals easily.

predictions <- predict(affairs_m, newdata = affairs_df_new, se.fit = T)
cbind(

predictions$fit - predictions$se.fit * qnorm(0.975),
predictions$fit + predictions$se.fit * qnorm(0.975)

)
#> [,1] [,2]
#> 1 -0.31580817 0.71279377
#> 2 -0.69575622 0.07107699
#> 3 -1.11464246 -0.53170159
#> 4 -1.61390737 -1.05410150
#> 5 -2.20146018 -1.48821351
#> 6 -0.07157505 0.97804664
#> 7 -0.44875880 0.33356556
#> 8 -0.86174317 -0.27511488
#> 9 -1.35221279 -0.80631009
#> 10 -1.93420954 -1.24597816

The confidence intervals just given are on the log odds scale, but we can easily put them on the probability
scale using the ilogit function.

cbind(
predictions$fit - predictions$se.fit * qnorm(0.975),
predictions$fit + predictions$se.fit * qnorm(0.975)

) %>% ilogit()
#> [,1] [,2]
#> 1 0.42169767 0.6710182
#> 2 0.33275380 0.5177618
#> 3 0.24700640 0.3701201
#> 4 0.16604683 0.2584383
#> 5 0.09961944 0.1841900
#> 6 0.48211387 0.7267205
#> 7 0.38965591 0.5826267
#> 8 0.29697528 0.4316518
#> 9 0.20550884 0.3086774
#> 10 0.12628538 0.2233971

Risk ratios and odds ratios
As mentioned above, the coefficients in a binary logistic regression give us differences in log odds. For example,
we saw that the difference in the log odds of having an affair between males and females, assuming that
rating is held constant at any value, is 0.255. We mentioned that these values are not easily interpreted in
intuitive terms, and it is preferable to compare probabilities if possible.

Using the predicted probabilities we made above, we can pivot_wider the predictions for females and males
to make them more easy to compare.

11

predictions <- affairs_df_new %>%
add_predictions(affairs_m, type='response') %>%
pivot_wider(names_from = gender, values_from = pred)

predictions
#> # A tibble: 5 x 3
#> rating female male
#> <int> <dbl> <dbl>
#> 1 1 0.549 0.611
#> 2 2 0.423 0.486
#> 3 3 0.305 0.362
#> 4 4 0.208 0.254
#> 5 5 0.136 0.169

With this, we can now calculate the difference and ratios of the probabilities of males and females.

predictions %>%
mutate(prob_diff = male - female,

prob_ratio = male/female)
#> # A tibble: 5 x 5
#> rating female male prob_diff prob_ratio
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.549 0.611 0.0619 1.11
#> 2 2 0.423 0.486 0.0631 1.15
#> 3 3 0.305 0.362 0.0565 1.19
#> 4 4 0.208 0.254 0.0451 1.22
#> 5 5 0.136 0.169 0.0329 1.24

The prob_ratio values are obviously the ratios of the probabilities of having an affair by a males to the
corresponding probabilities for females. These ratios are usually referred to as risk ratios or relative risks.
Note, however, that these values are not constant across all values of rating. In other words, the relative
risks of having an affairs by men and women varies according to value of rating.

Instead of ratios of probabilities, we can also calculate ratios of odds. We saw above that the odds is simply
the ratio of a probability p to 1− p.

predictions %>%
mutate(odds_male = male/(1-male),

odds_female = female/(1-female),
odds_ratio = odds_male/odds_female)

#> # A tibble: 5 x 6
#> rating female male odds_male odds_female odds_ratio
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.549 0.611 1.57 1.22 1.29
#> 2 2 0.423 0.486 0.944 0.732 1.29
#> 3 3 0.305 0.362 0.566 0.439 1.29
#> 4 4 0.208 0.254 0.340 0.263 1.29
#> 5 5 0.136 0.169 0.204 0.158 1.29

As we can see, the odds ratios comparing males and females are constant for all values of rating. Thus, we
can say that for any value of rating, the odds of having an affair by a man is exactly 1.29 greater than the
odds of having an affair by a female.

Let us look more closely at how we calculated these odds ratios. Let us assume that the value of rating is r.
Then, the log odds of having an affair by a female and a male are, respectively,

log
(

θfemale

1− θfemale

)
= β0 + β2 · r, log

(
θmale

1− θmale

)
= β0 + β1 + β2 · r.

12

This means that the odds of having an affair by a female or a male are, respectively,
θfemale

1− θfemale
= eβ0+β2·r,

θmale

1− θmale
= eβ0+β1+β2·r.

The odds ratio comparing males to females is therefore

θmale

1− θmale

/
θfemale

1− θfemale
= eβ0+β1+β2·r

eβ0+β2·r
= e(β0+β1+β2·r)−(β0+β2·r) = eβ1 .

More generally, by the same reasoning, we can see that for any predictor k, eβk gives the odds ratio
corresponding to a unit change in xk. In other words, eβk is the factor by which the odds increases whenever
xk increases by one unit, assuming any other predictors are held constant.

Note that as we saw above, we can obtain the 95% confidence intervals for the coefficients as follows.

confint.default(affairs_m, parm = c('gendermale', 'rating'))
#> 2.5 % 97.5 %
#> gendermale -0.1282487 0.6377347
#> rating -0.6773315 -0.3443333

To get the confidence intervals on the odds ratios corresponding to these predictors, we simply raise the
confidence intervals to the power of e.

confint.default(affairs_m, parm = c('gendermale', 'rating')) %>%
exp()

#> 2.5 % 97.5 %
#> gendermale 0.8796346 1.8921896
#> rating 0.5079707 0.7086927

Model comparison
As we saw above, we obtain the p-values for the null hypothesis tests that the true values of the coefficients
are zero from the z statistic that is the estimate of the coefficient divided by its standard error. A more
general way of doing null hypothesis tests in logistic regression, and also in related models as we will see
below, is to perform a log likelihood ratio test, which is in fact the deviance comparison test for nest model
comparison that we saw in Chapter 8. This allows us to compare one model with K predictors to another
model with K ′ < K predictors, where the K ′ predictors are a subset of the K predictors. This is a type
of nested model comparison because the model with the K ′ predictors is a subset of the model with the K
predictors. For example, we could compare the model using the gender and the rating predictors to a model
using either gender or rating alone, or to a model using no predictors. In each of these two comparisons,
we are comparing a model with two predictors with a model with a subset of these two predictors.

Generally speaking, we can describe the problem of nested model comparison using binary logistic regressions
as follows. We assume, as before, that our outcome variable is y1, y2 . . . yi . . . yn, where each yi ∈ {0, 1}, and
that we have a set of predictors ~x1, ~x2 . . . ~xi . . . ~xn, where each ~xi is

~xi = x1i, x2i . . . xki . . . xK′i . . . xKi.

Obviously, x1i, x2i . . . xki . . . xK′i ⊂ x1i, x2i . . . xki . . . xK′i . . . xKi.

From this, we can set up two models, one nested in the other. The first model, which we will callM1, uses
all K predictors.

M1 : yi ∼ Bernoulli(θi), logit(θi) = β0 +
K∑
k=1

βkxki.

We will compare this to modelM0 that uses K ′ predictors.

M0 : yi ∼ Bernoulli(θi), logit(θi) = β0 +
K′∑
k=1

βkxki.

13

The null hypothesis comparingM1 andM0 is that

βK′ = βK′+1 = . . . = βK = 0.

In other words, it is the hypothesis that all the coefficients corresponding to the predictors that are inM1
but not inM0 are simultaneously zero. We can test this null hypothesis using a likelihood ratio test.

We begin by inferring the maximum likelihood estimators of the coefficients in both M0 and M1. We
will denote the estimators forM0 andM1, by β̂M0 and β̂M1 . Having done so we can obtain the value of
the likelihood function in M0 and M1 evaluated at β̂M0 and β̂M1 . We will denote these by L0 and L1,
respectively. The likelihood ratio comparingM0 toM1 is simply

likelihood ratio = L0

L1
.

The logarithm of this likelihood is

log likelihood ratio = log
(
L0

L1

)
= log(L0)− log(L1).

According to Wilks’s theorem, when the null hypothesis is true, −2× log likelihood ratio is asymptotically dis-
tributed as a χ2 distribution with degrees of freedom K−K ′. Therefore, we calculate −2× log likelihood ratio
and the calculate the p-value, which is simply the probability of a getting a result greater than −2 ×
log likelihood ratio in a χ2 distribution with degrees of freedom K −K ′. Because

log likelihood ratio = log(L0)− log(L1),

we have
−2× log likelihood ratio = (−2 · log(L0))− (−2 · log(L1)).

We refer to −2 times the log of the likelihood of a model as its deviance, and we’ll denote the deviances of
modelsM0 andM1 by D0 and D1, respectively:

D0 = −2 · log(L0), D1 = −2 · log(L1).

Therefore, our likelihood ratio based null hypothesis test is based on the statistic

D0 −D1,

that we compare to a χ2 distribution with K −K ′ degrees of freedom.

We can perform this null hypothesis test in R easily in different ways. As an example, we will compare the
model with the two predictors gender and rating to a model with neither. We already have the model with
both predictors, and have named it affairs_m. We name the model with neither predictor affairs_m0.

affairs_m0 <- glm(cheater ~ 1,
family = binomial(link = 'logit'),
data = affairs_df)

The formula cheater ~ 1 indicates that we have an intercept only in this model and so the model is

yi ∼ Bernoulli(θi), logit(θi) = β0,

which entails that we assume that for each observation, there is a fixed probability, namely ilogit(β0), that
yi = 1.

We can obtain the log of the likelihoods of affairs_m and affairs_m0 with the logLik function.

logLik(affairs_m)
#> 'log Lik.' -318.2889 (df=3)
logLik(affairs_m0)
#> 'log Lik.' -337.6885 (df=1)

14

The corresponding deviances can be obtained with the deviance function.

deviance(affairs_m)
#> [1] 636.5778
deviance(affairs_m0)
#> [1] 675.377

These are easily verified as −2 times the log of the likelihoods.

logLik(affairs_m) * -2
#> 'log Lik.' 636.5778 (df=3)
logLik(affairs_m0) * -2
#> 'log Lik.' 675.377 (df=1)

The difference of the two deviances is as follows.

deviance(affairs_m0) - deviance(affairs_m)
#> [1] 38.79919

If the null hypothesis is true, this difference of the deviances will be distributed as a χ2 distribution with 2
degrees of freedom. The p-value for the null hypothesis is therefore

K <- affairs_m %>% coef() %>% length()
K_prime <- affairs_m0 %>% coef() %>% length()
pchisq(deviance(affairs_m0) - deviance(affairs_m),

df = K - K_prime,
lower.tail = F)

#> [1] 3.757193e-09

While it is instructive to go through the calculations in a step by step manner as we have just done, in
practice it is much easier and less error prone to use the generic anova function for doing likelihood ratio
tests. We perform the above analyses using anova as follows.

anova(affairs_m0, affairs_m, test='Chisq')
#> Analysis of Deviance Table
#>
#> Model 1: cheater ~ 1
#> Model 2: cheater ~ gender + rating
#> Resid. Df Resid. Dev Df Deviance Pr(>Chi)
#> 1 600 675.38
#> 2 598 636.58 2 38.799 3.757e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we can see, from this output, we have the deviances, the differences of the deviance, the degrees of freedom
for the χ2 distribution, and the p-value.

Bayesian approaches to logistic regression
The Bayesian approach to binary logistic regression begins with an identical probabilistic model to that of
the classical approach In other words, we assume our data is

(y1, ~x1), (y2, ~x2) . . . (yi, ~xi) . . . (yn, ~xn),

where each yi ∈ {0, 1} and each ~xi is a vector of the values of K predictor or explanatory variables, and that

yi ∼ Bernoulli(θi), logit(θi) = β0 +
K∑
k=1

βkxki, for i ∈ 1 . . . n.

15

At this point, the classical approach and the Bayesian approach diverge. The classical approach obtains the
maximum likelihood estimators β̂ and uses these estimators and their sampling distribution for hypothesis
testing, confidence intervals, and predictions, as we have seen above. On the other hand, the Bayesian
approach begins with the essential step of inferring the posterior distribution:

posterior︷ ︸︸ ︷
P(~β|X, ~y) =

likelihood︷ ︸︸ ︷
P(~y|X, ~β)

prior︷ ︸︸ ︷
P(~β)∫

P(~y|X, ~β)P(~β)d~β︸ ︷︷ ︸
marginal likelihood

,

∝

likelihood︷ ︸︸ ︷
P(~y|X, ~β)

prior︷ ︸︸ ︷
P(~β)

where ~y = y1, y2 . . . yn, X is the matrix whose rows are ~x1, ~x2, . . . ~xn, ~β = β0, β1 . . . βK . The likelihood
function, which we have seen above, is a function over ~β. Its value gives us the probability of the observing
our data given any value of ~β. The prior, on the other hand, is also a function over ~β, specifically a probability
density function. It gives the probability distribution over the possible values that ~β could take in principle.
These two functions are multiplied by one another to result in a new function over ~β, which is then divided
by its integral so that the resulting posterior distribution integrates to one, and hence is a probability density
function. We interpret the posterior distribution as follows. Assuming that the data is generated by the
stated logistic regression model, and also that the possible values that ~β could take in principle are given by
P(~β), then the posterior distribution gives the probability that the true value of ~β is any given value.

Unlike the case of Bayesian linear regression, there are no choices of prior that will lead to an analytic or
closed form solution to the posterior distribution. As such, we must use alternative numerical methods. One
traditionally commonly used approach, described in Bishop (2006), Murphy (2012) and elsewhere is to use
a Laplace approximation to the posterior distribution, which approximates the posterior distribution is a
multivariate normal distribution. However, given the current state of general purpose software for mcmc
sampling in Bayesian models, as we described in Chapter 8 and will described further in Chapter 17, it is now
practically much easier to use mcmc methods, particularly the Hamiltonian Monte Carlo methods available
with the Stan probabilistic programming language. As we’ve seen, a very easy to use R based interface to
Stan is available through the brms package.

In the following code, we define and fit a Bayesian logistic regression model predicting cheater from both
gender and rating, just as we did above.

affairs_m_bayes <- brm(cheater ~ gender + rating,
family = bernoulli(),
data = affairs_df)

This syntax is almost identical to the glm model. However, the family is specified as bernoulli rather than
binomial. The link function will default to logit.

By using the default settings, we use 4 chains, each with 2000 iterations, and where the initial 1000 iterations
are discarded, leaving to 4000 total samples. The priors used by default are seen in the following table.

prior_summary(affairs_m_bayes)
#> prior class coef group resp dpar nlpar bound
#> 1 b
#> 2 b gendermale
#> 3 b rating
#> 4 student_t(3, 0, 2.5) Intercept

The blank in the prior column for the coefficients for gender and rating tell us that a uniform prior is being
used, while a non-standard t-distribution with 3 degrees and a scale of 10 is on the Intercept coefficient.

We can view the summary of the inference of the coefficients as follows.

summary(affairs_m_bayes)$fixed
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

16

#> Intercept 0.7089189 0.34298420 0.05357066 1.4032220 1.000832 4413 2981
#> gendermale 0.2613167 0.20020218 -0.13226492 0.6528835 1.000461 4097 3401
#> rating -0.5130190 0.08648511 -0.68262469 -0.3473037 1.000304 3735 2830

First, the Rhat values are all almost exactly equal to 1.0, which indicates that the chains have converged.
The Bulk_ESS2 is an estimate of the number of independent samples that are informationally equivalent to
the samples from the sampler, which are necessarily non-independent. We see that for each coefficient these
are close to the theoretical maximum of 4000. This indicates that the sampler is very efficient.

Notice how the posterior mean and its standard deviation, given by Estimate and Est.Error, respectively,
are almost identical to the maximum likelihood estimator and the standard error of the sampling distribution
of the maximum likelihood estimator. Likewise, the 95% credible interval, given by l-95% CI and u-95% CI
also closely parallel the classical 95% confidence intervals. We saw this close parallel between the classical
and Bayesian models in the case of linear regression as well. It is to be expected in any situation where we
have a relatively large amount of data, thus leading to a concentrated likelihood function, and a diffuse prior
distribution.

In the following code, we calculate the 95% posterior interval on φι = ~xι~β, where ~xι is a vector of values of
the predictor variables. We do this for each observation in the affair_df_new data frame that used above.

posterior_linpred(affairs_m_bayes, newdata = affairs_df_new) %>%
as_tibble() %>%
map_df(~quantile(., probs=c(0.025, 0.5, 0.975))) %>%
set_names(c('l-95% CI', 'prediction', 'u-95% CI')) %>%
bind_cols(affairs_df_new, .)

#> # A tibble: 10 x 5
#> gender rating `l-95% CI` prediction `u-95% CI`
#> <chr> <int> <dbl> <dbl> <dbl>
#> 1 female 1 -0.314 0.194 0.733
#> 2 female 2 -0.706 -0.315 0.0825
#> 3 female 3 -1.12 -0.829 -0.531
#> 4 female 4 -1.64 -1.34 -1.05
#> 5 female 5 -2.23 -1.85 -1.49
#> 6 male 1 -0.0652 0.452 0.980
#> 7 male 2 -0.443 -0.0564 0.332
#> 8 male 3 -0.855 -0.570 -0.277
#> 9 male 4 -1.35 -1.08 -0.809
#> 10 male 5 -1.94 -1.59 -1.24

Again, we see a close parallel between these results and those of the 95% confidence interval on predictions
obtained from the classical approach.

Latent variable formulation
Before we leave binary logistic regression, as we will see when considering other forms of logistic regression, it
is useful to consider an alternative formulation of it. In this, yi is a binary variable that takes the value of 1
or 0 if a latent variable ηi is respectively above or below 0. More precisely, this latent variable formulation is
as follows:

for i ∈ 1 . . . n, yi =
{

1, if ηi ≥ 0,
0, if ηi < 0

,

ηi ∼ logistic(φi, 1).
2The Bulk_ESS and Tail_ESS are two separate measures of effective samples size, with one (Bulk) using samples from the

center of the distribution of the samples and the other (Tail) using samples from the tails. We will primarily focus on Bulk_ESS
here, but if Tail_ESS is low when Bulk_ESS is not low, which may happen in heavy tailed distribution, this may indicate
convergence problems with the sampler.

17

0.00

0.05

0.10

0.15

0.20

0.25

−10 −5 0 5 10
x

de
ns

ity
distribution

logistic

normal

Figure 5: The standard logistic distribution whose mean is equal to 0 and whose scale parameter is 1. This
compared with a normal distribution centered at 0 and with standard deviation of 1.63.

Here, ηi is a latent or unobserved random variable that is distributed as a logistic distribution whose mean is
φi = β0 +

∑K
k=1 βkxki and whose scale parameter is equal to 1. The logistic distribution, displayed in Figure

5, is a bell shaped distribution. It is roughly similar to normal distribution centered with a standard deviation
of 1.63. The probability density of the logistic distribution with location paramter φi scale parameter equal
to 1 is as follows:

P(ηi|φi) = e−(ηi−φi)(
1 + e−(ηi−φi)

)2 .

The cumulative distribution function of the logistic distribution is as follows:

P(ηi ≤ ω|φi) =
∫ ω

−∞

e−(ηi−φi)(
1 + e−(ηi−φi)

)2 dηi = 1
1 + e−(ω−φi)

.

From this cumulative distribution function, we can see that the probability that yi will take the value of 1 is
equal to the probability that ηi takes a value of greater than 0, which is as follows:

P(yi = 1) = 1− P(ηi < 0|φi) = 1− 1
1 + eφi

= 1
1 + e−φi

= ilogit(φi).

Hence, we see that the latent variable formulation is identical to original definitions of the logistic regression
given above, where the probability that yi takes the value of 1 was equal to θi, which was equal to 1/(1+e−φi).

From this formulation, we see the correspondence between the normal linear model and the binary logistic
regression. In the normal linear model, the outcome variable yi is modelled as a normal distribution whose
mean increases or decreases as a linear function of a set of predictors. In the binary logistic regression, a
latent variable ηi is modelled as logistic distribution whose mean increases or decreases as a linear function of
a set of predictors, and the binary outcome variable yi takes the value of 0 or 1 depending on whether this
latent variable is, respectively, above or below 0. We can see that the latent variable as an evidence variable,
and so the distribution over it as a distribution over the evidence in favour of one outcome value yi = 1 or
another yi = 0. In Figure 6, we show three logistic distributions over a latent variable η. We can view these
as three different representations of the degree of evidence for the value of the outcome variable.

18

0.00

0.05

0.10

0.15

0.20

0.25

−10 −5 0 5 10
η

y
a

0.00

0.05

0.10

0.15

0.20

0.25

−10 −5 0 5 10
η

y

b

0.00

0.05

0.10

0.15

0.20

0.25

−10 −5 0 5 10
η

y

c

Figure 6: Three logistic distributions with means a) -1.75 b) 0.50 c) 1.25. Each distribution can seen as a
representation of the degree of evidence of the outcome variable yi taking the value of 1. As the distribution
shifts to the right, there is more evidence in favour of the outcome variable taking the value of 1. In these
three distributions, the probabilities that the outcome is 1 corresponds to 0.15, 0.62, and 0.78.

Probit regression
Having seen the latent variable formulation of binary logistic regression, we are able to more easily understand
probit regression, which is a regression model that is very closely related to binary logistic regression regression.
In probit regression, each outcome variable yi is binary. They are modelled as follows:

for i ∈ 1 . . . n, yi =
{

1, if ηi ≥ 0,
0, if ηi < 0

,

ηi ∼ N(φi, 1),

where N(φi, 1) is a normal distribution with mean of φi and standard deviation of 1, and where φi is a linear
function of a set of predictors, just as above. By direct analogy with the latent variable formulation of the
binary logistic model, in the probit model, the probability that yi will take the value of 1 is equal to the
probability that ηi takes a value of greater than 0, which is as follows:

P(yi = 1) = 1− P(ηi < 0|φi) = 1− Φ(−φi) = Φ(φi),

where Φ is the cumulative distribution function in a standard normal distribution. In order words, in binary
logistic regression, we have

P(yi = 1) = ilogit(φi),

while in probit regression, we have
P(yi = 1) = Φ(φi).

Thus, binary logistic regression and probit differ by their link function. It is the log odds or logit function
in the case of logistic regression, and it is the quantile function Φ−1, which is the inverse of the cumulative
distribution function Φ, of the standard normal in the case of probit regression. These functions are shown in
Figure 7.

We can perform a probit regression in R using glm just like in the case of binary logistic regression, but using
link = 'probit' instead of link = 'logit'. In the following, using the affairs_df data, we model how
the probability of being a cheater varies as a function of the rating variable.

affairs_probit <- glm(cheater ~ rating,
family = binomial(link = 'probit'),
data = affairs_df)

19

−4

0

4

0.00 0.25 0.50 0.75 1.00
x

y

link

logit

qnorm

a

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10
x

y

inv_link

ilogit

pnorm

b

Figure 7: a) The logit and quantile function of the normal distribution, which are the link functions of
binary logistic regression and probit regression, respectively. b) The inverse logit and cumulative distribution
function of the normal distribution.

In probit regression, statistical inference is identical to binary logistic regression: the maximum likelihood
estimator of the regression coefficients is found by iteratively reweighted least squares, whose sampling
distribution is asymptotically normal. The coefficients summary table for affairs_probit are as follows.

summary(affairs_probit)$coefficients
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.4817451 0.19788927 2.434418 1.491577e-02
#> rating -0.3031677 0.05023335 -6.035187 1.587786e-09

Comparing this to the set of coefficients for the binary logistic regression, we see that are considerable
differences in the scale of the coefficients and their standard errors, though with the z test statistics being
very similar.

glm(cheater ~ rating, family = binomial(link = 'logit'), data = affairs_df) %>%
summary() %>%
extract2('coefficients')

#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.8253902 0.32548132 2.535907 1.121566e-02
#> rating -0.5082193 0.08468845 -6.001046 1.960510e-09

Importantly, in the probit regression, we do not interpret the coefficients in terms of odds ratios. In probit
regression, the coefficient gives the change in mean of the (unit variance) normal distribution over the latent
variable in the probit model for every unit change in the predictor. For example, in the affairs_probit
model, the coefficient for rating is -0.303. This means that as rating increases by one unit, the mean of the
normal distribution over the latent variable increases by -0.303 unit.

Prediction in probit regression works like prediction in binary logistic regression, but we apply the inverse

20

of the link function, which is the standard normal, to convert from the value of the linear predictor φi to
the probability that yi = 1. We can do this using the predict and add_predictions function using type =
'response' as follows.

tibble(rating = seq(5)) %>%
add_predictions(affairs_probit, type = 'response')

#> # A tibble: 5 x 2
#> rating pred
#> <int> <dbl>
#> 1 1 0.571
#> 2 2 0.450
#> 3 3 0.334
#> 4 4 0.232
#> 5 5 0.151

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5
η

y

a

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5
η

y
b

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5
η

y

c

Figure 8: The distribution over the latent variable in the probit regression model that models the probability
of being a cheater as a function of rating, for values of rating equal to a) 1 b) 3, and c) 5. When
rating increases by one unit, the mean of the normal distribution increases by -0.30, which is the value
of the coefficient for rating. The areas shaded to the right are the corresponding probabilities that the
outcome variable yi takes the value of 1, which in this case means the probability that the person has had an
extra-martial affair. These probabilities are 0.57, 0.33, and 0.15, respectively.

Ordinal logistic regression
In ordinal regression, the outcome variable yi is an ordinal variable. An ordinal variable can be seen as
a categorical variable where the values have an order. Alternatively, an ordinal variable can be seen as a
numerical variable whose values can be ordered but not defined on a metric space. For example, the values of
yi could be low, medium, high. Here, there is a natural order: low < medium < high. However, we do not
necessarily believe that difference between low and medium is the same as between medium and high. We
may represent the low, medium, high by {0, 1, 2}. We treat these values as essentially labels, just as we would
do with a categorical variable, though with the understanding that 0 < 1 < 2.

In a regression model with an ordinal outcome variable, we model the probability distribution over the
outcome variable and how it changes with a set of predictor variables. For example, consider the world values
surveys data that is available in carData by the name WVS.

library(carData)
wvs_df <- as_tibble(WVS)
wvs_df
#> # A tibble: 5,381 x 6
#> poverty religion degree country age gender

21

#> <ord> <fct> <fct> <fct> <int> <fct>
#> 1 Too Little yes no USA 44 male
#> 2 About Right yes no USA 40 female
#> 3 Too Little yes no USA 36 female
#> 4 Too Much yes yes USA 25 female
#> 5 Too Little yes yes USA 39 male
#> 6 About Right yes no USA 80 female
#> 7 Too Much yes no USA 48 female
#> 8 Too Little yes no USA 32 male
#> 9 Too Little yes no USA 74 female
#> 10 Too Little yes no USA 30 male
#> # ... with 5,371 more rows

In this data set, we have a variable poverty that represents the responses to the survey question Do you
think that what the government is doing for people in poverty in this country is about the right amount, too
much, or too little?. This variable takes the values of Too Little, About Right, and Too much. Note that
this variable is an ordered factor.

wvs_df %>% pull(poverty) %>% class()
#> [1] "ordered" "factor"

In other words, it is a factor variable whose levels have a defined order, namely the following.

wvs_df %>% pull(poverty) %>% levels()
#> [1] "Too Little" "About Right" "Too Much"

In addition to poverty, we have predictor variables such as religion, gender, age, etc. In Figure 9, we
group the age variable into 5 quintiles, and plot the numbers of males and female respondents in these
quintiles who choose each of the three responses to the poverty question. From this data, we can see that as
age increases, the number of people responding Too Little declines, and the numbers of people responding
either About Right or Too Much increase. We also see that more females than males respond Too Little,
and usually more males than females respond About Right or Too Much.

1 2 3 4 5

Too Little
About R

ight
Too M

uch

Too Little
About R

ight
Too M

uch

Too Little
About R

ight
Too M

uch

Too Little
About R

ight
Too M

uch

Too Little
About R

ight
Too M

uch

0

100

200

300

poverty

co
un

t

gender female male

Figure 9: The frequencies of choosing each possible response to a survey question about what the government
is doing about poverty, as a function of the respondent’s age quintile (lower means younger) and gender.

One of the most widely used regression models for ordinal outcome data is the proportional odds or cumulative

22

logit logistic regression model. In the case of an ordinal outcome variable with three values, i.e., yi ∈ {1, 2, 3},
this model is equivalent to the latent variable formulation of the binary logistic regression that we saw above,
but with two rather than one thresholds, which are known as cutpoints, and denoted here by ζ1 and ζ2. In
particular, the model is as follows.

for i ∈ 1 . . . n, yi =

3, if ηi ≥ ζ2,

2, if ζ1 ≤ ηi < ζ2,

1, if ηi < ζ1

,

ηi ∼ logistic(φi, 1).

From this we have,

P(yi ≤ 2) =
∫ ζ1

∞
P(ηi|φi)dηi = 1

1 + e−(ζ2−φi)
= ilogit(ζ2 − φi),

P(yi ≤ 1) =
∫ ζ0

∞
P(ηi|φi)dηi = 1

1 + e−(ζ1−φi)
= ilogit(ζ1 − φi),

and so P(yi = 3) = 1− P(yi ≤ 2) = 1− ilogit(ζ2 − φi). Stating these cumulative probabilities in terms of log
odds, we have

log
(

P(yi ≤ 2)
1− P(yi ≤ 2)

)
= ζ2 − φi,

log
(

P(yi ≤ 1)
1− P(yi ≤ 1)

)
= ζ1 − φi.

In general, for an ordinal variable with J levels, 1 . . . J , for j ∈ 1 . . . J − 1, we have

log
(

P(yi ≤ j)
1− P(yi ≤ j)

)
= ζj − φi,

where ζ1 < ζ2 < . . . < ζJ−1.

The value of φi is, as it was used above, the linear sum of the predictors, i.e. φi = β0 +
∑K
k=1 βkxki. Having

the intercept term β0 as well the cutpoints ζ1, ζ2 . . . ζJ−1 means that neither are identifiable because we could
add any constant value to β0 and subtract this value from each of ζ1, ζ2 . . . ζJ−1 to obtain an identical model.
For this reason, we must constrain the values of either β0 or the cutpoints. One possibility is to contrain ζ1 to
equal 0. Another, which is more common, is to contrain β0 to equal to 0. In other words, φi =

∑K
k=1 βkxki.

The general model for the cumulative logits ordinal logistic regression is therefore the following.

for i ∈ 1 . . . n, yi =

J, if ηi ≥ ζJ−1,

J − 1, if ζJ−2 ≤ ηi < ζJ−1,

. . . ,

2, if ζ1 ≤ ηi < ζ2,

1, if ηi < ζ1

,

ηi ∼ logistic(φi, 1), φi =
K∑
k=1

βkxki.

For any 1 ≤ j ≤ J − 1, we have

P(yi = j) = P(yi ≤ j)− P(yi ≤ j − 1),
= ilogit(ζj − φi)− ilogit(ζj−1 − φi).

23

Ordinal logistic regression in R
There are many options to perform ordinal logistic regression in R. For example, the ordinal package is an
excellent package for many variants of the ordinal logistic model including and especially mixed effect ordinal
models. Here, however, we will use the polr function from the MASS package which is simple and easy to use
and perfectly illustrates ordinal logistic regression as we have described it thus far. We will use it here to
model how the poverty variable varies as a function of age and gender in the wvs_df data set.

library(MASS)
M_ord <- polr(poverty ~ age + gender, data = wvs_df)
summary(M_ord)
#> Call:
#> polr(formula = poverty ~ age + gender, data = wvs_df)
#>
#> Coefficients:
#> Value Std. Error t value
#> age 0.01308 0.001523 8.592
#> gendermale 0.15411 0.052139 2.956
#>
#> Intercepts:
#> Value Std. Error t value
#> Too Little|About Right 0.6762 0.0779 8.6794
#> About Right|Too Much 2.4123 0.0850 28.3761
#>
#> Residual Deviance: 10656.41
#> AIC: 10664.41

In the summary, the values of the coefficients for the linear sum are listed under Coefficients, while the
values of ζ1 and ζ2 are listed under Intercepts. The maximum likelihood estimates of the coefficients and
the cutpoints are calculated using a general purpose optimization based on the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm, and estimates the standard error of these estimates using the Hessian matrix
of the log-likelihood function evaluated at its maximum. Note that the summary output does not contain
p-values for either the coefficients or for the cutpoints. The authors of MASS (Venables and Ripley 2002)
state that the exact distribution of the estimates are not known and so exact p-values can not be calculated.
Alternative methods for evaluating coefficients, based on likelihood ratio tests, are recommended instead.
However, as an approximation, though one to be used cautiously, we can treat the sampling distribution for
these estimates as normally distributed and so treat the t value as a standard normal statistic and calculate
the p-value using the cumulative normal distribution.

Although, as we will see, we can use R’s generic predict function to calculate the probabilities for the
poverty outcome variable for any given set of values for the predictor variables, it is instructive to do this
manually. For example, for a male of median age (for men), which is 44 years in this data set, the value of φi
is

φi = 0.0131× 44 + 0.1541× 1,
= 0.73.

The log odds that this median aged male responds that poverty is “Too Little” and poverty is “Too Little”
or “About Right” are, respectively, ζ1 − φi = 0.676 − 0.73 = −0.05 and ζ2 − φi = 2.412 − 0.73 = 1.68.
These correspond to cumulative probabilities of ilogit(ζ1 − φi) = 0.49 and ilogit(ζ2 − φi) = 0.84. Thus,
the probability that the median aged male responds by “Too Much”, “About Right”, or “Too Little” is,
respectively, 1− ilogit(ζ2 − φi) = 0.16, ilogit(ζ2 − φi)− ilogit(ζ1 − φi) = 0.36, and ilogit(ζ1 − φi) = 0.49. The
logistic distribution corresponding to φ = 0.73 is shown in Figure 10.

Using the predict or add_predictions functions, we can easily calculate the probabilities over the outcome
variable’s values for any given set of values of the predictor variables. To do so, we must use the type =
'probs' argument when calling these functions.

24

ζ1 ζ2

0.0

0.1

0.2

−4 0 4 8
ηi

y

Figure 10: The partitioning of the area under the logistic distribution whose mean is φi = 0.73, which is the
value of the linear predictor for a median aged male. The two cutpoints are ζ1 = 0.68 and ζ2 = 2.41.

new_data <- expand_grid(age = c(25, 50, 75),
gender = c('male', 'female'))

add_predictions(new_data, M_ord, type='probs')
#> # A tibble: 6 x 3
#> age gender pred[,"Too Little"] [,"About Right"] [,"Too Much"]
#> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 25 male 0.549 0.325 0.127
#> 2 25 female 0.586 0.303 0.111
#> 3 50 male 0.467 0.366 0.167
#> 4 50 female 0.505 0.347 0.147
#> 5 75 male 0.387 0.395 0.218
#> 6 75 female 0.424 0.383 0.193

Odds ratios
We can interpret the values of the cutpoints and the regression coefficients in terms of odds ratios. We saw
above that, for all j ∈ 1 . . . J ,

log
(

P(yi ≤ j)
1− P(yi ≤ j)

)
= ζj − φi.

From this, for any two cutpoints j′ > j, we have

log
(

P(yi ≤ j′)
1− P(yi ≤ j′)

)
− log

(
P(yi ≤ j)

1− P(yi ≤ j)

)
= (ζ ′j − φi)− (ζj − φi),

log
(

P(yi ≤ j′)
1− P(yi ≤ j′)

/
P(yi ≤ j)

1− P(yi ≤ j)

)
= ζ ′j − ζj ,

P(yi ≤ j′)
1− P(yi ≤ j′)

/
P(yi ≤ j)

1− P(yi ≤ j)
= eζ

′
j−ζj .

From this, we see that ej′−j is the odds ratio corresponding to the probabilities P(yi < j′) and P(yi < j). In
other words, the ratio of the odds that yi < j′ to the odds that yi < j′, for any j′ and j, is ej′−j . Note that
this will hold for any value of φ and so holds for any set of values of the predictors.

To interpret the coefficients, consider increasing the value of any predictor k by one unit. If φi =
∑K
k=1 βkxki,

if we increase xki by one unit, we have φ′i =
∑K
k=1 βkxki + βk = φ + βk. For any value j of the ordinal

25

outcome variable, we have

log
(

P(yi ≤ j|φ′)
1− P(yi ≤ j|φ′)

)
− log

(
P(yi ≤ j|φ)

1− P(yi ≤ j|φ)

)
= (ζj − φ′i)− (ζj − φi) = βk,

P(yi ≤ j|φ′)
1− P(yi ≤ j|φ′)

/
P(yi ≤ j|φ)

1− P(yi ≤ j|φ) = eβk .

In other words, eβk is the factor by which the odds that yi ≤ j, for any j ∈ 1 . . . J − 1, increases for every one
unit increase in predictor variable k.

Bayesian ordinal logistic regression
We can perform a Bayesian counterpart of the cumulative logit ordinal logistic regression model as follows.

M_ord_bayes <- brm(poverty ~ age + gender,
family = cumulative(link = 'logit'),
data = wvs_df)

As we can see, all we need specify is that the family is cumulative and the link is logit, which is the default
in fact. By using all the other default settings, we use 4 chains, each with 2000 iterations, and where the
initial 1000 iterations are discarded, leaving to 4000 total samples.

The default priors in this model are seen in the following table.

prior_summary(M_ord_bayes)
#> prior class coef group resp dpar nlpar bound
#> 1 b
#> 2 b age
#> 3 b gendermale
#> 4 student_t(3, 0, 2.5) Intercept
#> 5 Intercept 1
#> 6 Intercept 2

This tells us that the cutpoints have non-standard student t-distributions and the coefficients have uniform
distributions as priors.

The summary of the posterior distribution of the regression coefficients and the cutpoints are as follows:

summary(M_ord_bayes)$fixed
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> Intercept[1] 0.67727898 0.079030844 0.51950236 0.83619957 0.9996931 4446 2906
#> Intercept[2] 2.41520856 0.086665885 2.24881906 2.58807770 1.0001916 4349 2911
#> age 0.01311032 0.001544013 0.01007376 0.01612692 0.9995239 4880 2799
#> gendermale 0.15377660 0.050522945 0.05841022 0.25147234 1.0018276 3474 2918

Clearly, the means of these estimates are very similar to those estimated using maximum likelihood estimation
above.

Categorical (multinomial) logistic regression
Thus far, we have considered regression models where the outcome variable is either a binary variable or an
ordinal variable. If the outcome variable is a categorical variable with more than two values, we can use an
extension of logistic regression that we will refer to here as categorical logistic regression, but which is more
also commonly referred to as multinomial logistic regression. We prefer the term categorical, rather than
multinomial, logistic regression for this model given that the outcome variable is a categorical variable. We
prefer to reserve the term multinomial logistic regression for case of models where the outcome variable is
vector of counts of the number of observations of each of a set of categorically distinct outcomes.

26

In categorical logistic regression, for each observation, our outcome variable can be represented as yi ∈ 1 . . . J ,
where 1 . . . J are J categorically distinct values. For example, in a hypothetical pre-election voting preference
poll in the UK, people might be asked if they will vote Conservative, Labour, Liberal Democrats, Green,
Other. We might then model how the probability distribution over these choice vary by UK region, age,
gender, etc.

In categorical logistic regression, we model the log of the probability of each category relative to an arbitrarily
chosen baseline category as a linear function of the predictors. Setting the baseline category to be j = 1,
then for each j = 2 . . . J , we have

log
(

P(yi = j)
P(yi = 1)

)
= φji = βj0 +

K∑
k=1

βjkxki,

and by necessity, we have

log
(

P(yi = 1)
P(yi = 1)

)
= φ1i = 0.

In other words, we model the log of the probability that yi = j relative to yi = 1 as a linear function of the
predictors. Note that we have a separate linear model with different coefficients for each j > 2. We can
interpret the log ratio

log
(

P(yi = j)
P(yi = 1)

)
= φji

in one of two ways. We can either interpret it directly as simply the log of a relative probabilities. Alternatively,
we can interpret it as the log odds of the conditional probability that yi = j given that we know that yi = j
or yi = 1.

From this model, we have
P(yi = j) = eφjiP(yi = 1),

and given that, by definition, we have
J∑
j=1

P(yi = j) = 1,

we therefore have the following:

P(yi = 1)
J∑
j=1

eφji = 1

P(yi = 1) = 1∑J
j=1 e

φji
.

This leads to the following model of the probabilities of each of the J values of the outcome variable.

P(yi = j) = eφji∑J
j=1 e

φji
.

Given that eφ1i = 1, it is more common to write this as

P(yi = j) = eφji

1 +
∑J
j=2 e

φji
.

Categorical logistic regression using R
We have many options for doing categorical logistic regression in R. One simple option is to use multinom
from the nnet package.

To illustrate this model, we will use a data set based on a subset of the weather_check data set in the
fivethirtyeight package.

27

weather_df <- read_csv('data/weather.csv')
weather_df
#> # A tibble: 916 x 2
#> weather age
#> <chr> <chr>
#> 1 app 30 - 44
#> 2 app 18 - 29
#> 3 app 30 - 44
#> 4 app 30 - 44
#> 5 app 30 - 44
#> 6 app 18 - 29
#> 7 weather_channel 30 - 44
#> 8 weather_channel 30 - 44
#> 9 app 30 - 44
#> 10 internet 18 - 29
#> # ... with 906 more rows

In this data, people were asked what was their source of information about the weather (weather). This
had values app for a mobile device app, internet for general internet search, tv for local television,
weather_channel for the weather channel, and other for other sources like newspaper, newsletter, etc. The
respondents’ ages were listed as the age groups 18 - 29, 30 - 44, 45 - 59, 60+. The frequency of each
response for each age group is as follows:

weather_df %>%
group_by(age, weather) %>%
tally() %>%
pivot_wider(id_cols = age, names_from = 'weather', values_from = n)

#> # A tibble: 4 x 6
#> # Groups: age [4]
#> age app internet other tv weather_channel
#> <chr> <int> <int> <int> <int> <int>
#> 1 18 - 29 92 35 9 14 26
#> 2 30 - 44 108 26 8 34 28
#> 3 45 - 59 108 33 21 67 49
#> 4 60+ 80 36 33 74 35

From this, we see a relative increase with age for television, particularly local television, and a relative decline
with age for mobile apps.

The following code models the probability distribution of the different weather news sources. First, we will
set the age and source variables as factors, which will order the results to make them easier to interpret.

weather_df %<>%
mutate(age = factor(age, levels = c('18 - 29', '30 - 44', '45 - 59', '60+')),

weather = factor(weather, levels = c('other', 'app', 'internet', 'tv', 'weather_channel'))
)

For simplicity, we will begin with a model that has a single constant term.

M_cat <- multinom(weather ~ 1, data = weather_df)

The values of coefficients are estimated using a BFGS based optimization of the log of the likelihood, as was
also done above in the case of ordinal logistic regression. Note that weather == 'other' is the baseline
against which all other weather news sources are compared.

summary(M_cat)
#> Call:
#> multinom(formula = weather ~ 1, data = weather_df)

28

#>
#> Coefficients:
#> (Intercept)
#> app 1.6981849
#> internet 0.6047535
#> tv 0.9789591
#> weather_channel 0.6644412
#>
#> Std. Errors:
#> (Intercept)
#> app 0.1290746
#> internet 0.1475638
#> tv 0.1391899
#> weather_channel 0.1460458
#>
#> Residual Deviance: 2656.368
#> AIC: 2664.368

In order to appreciate the meaning of the coefficients, it helps to calculate the probability distribution over
the five options using the formula

P(yi = j) = eφji

1 +
∑J
j=2 e

φji
.

For j ∈ 2, 3, 4, 5, for all i, φji = βj , while φ1i = 0.

phi <- rbind(other = 0, coef(M_cat)) %>% as_tibble(rownames = 'id') %>% deframe()
phi
#> other app internet tv weather_channel
#> 0.0000000 1.6981849 0.6047535 0.9789591 0.6644412

From this, the corresponding probabilities are as follows:

exp(phi)/sum(exp(phi))
#> other app internet tv weather_channel
#> 0.07751992 0.42357044 0.14192354 0.20633355 0.15065255

We can now use age as a predictor as follows.

M_cat_2 <- multinom(weather ~ age, data = weather_df)

summary(M_cat_2)
#> Call:
#> multinom(formula = weather ~ age, data = weather_df)
#>
#> Coefficients:
#> (Intercept) age30 - 44 age45 - 59 age60+
#> app 2.3244935 0.2782843 -0.6867980 -1.4389520
#> internet 1.3580627 -0.1793077 -0.9059785 -1.2710166
#> tv 0.4417131 1.0052996 0.7185451 0.3658706
#> weather_channel 1.0607799 0.1920954 -0.2133944 -1.0019129
#>
#> Std. Errors:
#> (Intercept) age30 - 44 age45 - 59 age60+
#> app 0.3492458 0.5062047 0.4229123 0.4059266
#> internet 0.3737301 0.5505876 0.4664758 0.4446970
#> tv 0.4272412 0.5804809 0.4950589 0.4757649
#> weather_channel 0.3867369 0.5570370 0.4664723 0.4565528
#>

29

#> Residual Deviance: 2589.321
#> AIC: 2621.321

To calculate the probability distributions over weather, rather than doing so manually, we can use predict
or add_predictions with type = 'probs'.

tibble(age = c('18 - 29', '30 - 44', '45 - 59', '60+')) %>%
add_predictions(M_cat_2, type='probs')

#> # A tibble: 4 x 2
#> age pred[,"other"] [,"app"] [,"internet"] [,"tv"] [,"weather_channel"]
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 18 - 29 0.0511 0.523 0.199 0.0795 0.148
#> 2 30 - 44 0.0392 0.529 0.127 0.167 0.137
#> 3 45 - 59 0.0755 0.388 0.119 0.241 0.176
#> 4 60+ 0.128 0.310 0.140 0.287 0.136

These predicted probabilities are shown in Figure 11. What is most clear here is that we see that mobile
device apps decline, and local television increases, as age increases.

0.00

0.25

0.50

0.75

1.00

18 − 29 30 − 44 45 − 59 60+
age

pr
ob

weather

app

internet

other

tv

weather_channel

Figure 11: Probability distribution over different sources of weather news as a function of age group.

Bayesian categorical logistic regression
We can perform a Bayesian version of the model in the previous section using brm with family =
categorical(link = 'logit').

M_cat_bayes <- brm(weather ~ age,
family = categorical(link = 'logit'),
data = weather_df)

The summary output is formatted in a long format in comparison to wide format seen above with multinom.

summary(M_cat_bayes)$fixed
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> muapp_Intercept 2.3681937 0.3456028 1.7258611 3.07083399 1.001543 1189 1776
#> muinternet_Intercept 1.3900579 0.3663141 0.7067108 2.11194174 1.002289 1254 1776
#> mutv_Intercept 0.4512383 0.4309300 -0.3917491 1.27590583 1.002892 1354 2070
#> muweatherchannel_Intercept 1.0932604 0.3841146 0.3496441 1.84002398 1.001782 1270 1752

30

#> muapp_age30M44 0.2616396 0.5025598 -0.6793213 1.27311116 1.002277 1365 1775
#> muapp_age45M59 -0.7249908 0.4203623 -1.5574123 0.09504825 1.002130 1411 2088
#> muapp_age60P -1.4856187 0.4025590 -2.2626366 -0.71451503 1.002007 1398 2053
#> muinternet_age30M44 -0.1979753 0.5396543 -1.2392054 0.87074519 1.001707 1514 1848
#> muinternet_age45M59 -0.9472343 0.4579603 -1.8520972 -0.05810783 1.002109 1548 2495
#> muinternet_age60P -1.3162809 0.4376876 -2.1836292 -0.47309898 1.001769 1539 2293
#> mutv_age30M44 1.0099413 0.5791534 -0.1202443 2.16831825 1.001522 1398 2075
#> mutv_age45M59 0.7091732 0.4936254 -0.2720899 1.67957014 1.002489 1545 2207
#> mutv_age60P 0.3526576 0.4755895 -0.5502657 1.30851344 1.003199 1483 2250
#> muweatherchannel_age30M44 0.1734805 0.5555558 -0.9085286 1.27491266 1.000852 1411 1817
#> muweatherchannel_age45M59 -0.2450089 0.4601888 -1.1567660 0.64638359 1.002080 1476 2001
#> muweatherchannel_age60P -1.0443862 0.4569367 -1.9499843 -0.17354991 1.001375 1584 2110

We can rearrange the posterior mean estimates as follows.

fixef(M_cat_bayes) %>%
as_tibble(rownames = 'var') %>%
dplyr::select(var, Estimate) %>%
separate(var, into = c('var', 'age')) %>%
pivot_wider(var, names_from = age, values_from = Estimate)

#> # A tibble: 4 x 5
#> var Intercept age30M44 age45M59 age60P
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 muapp 2.37 0.262 -0.725 -1.49
#> 2 muinternet 1.39 -0.198 -0.947 -1.32
#> 3 mutv 0.451 1.01 0.709 0.353
#> 4 muweatherchannel 1.09 0.173 -0.245 -1.04

Just as above, with the Bayesian model, we can perform predictions using predict or add_predictions.
Note that here we do not need to use type = 'probs'.

tibble(age = c('18 - 29', '30 - 44', '45 - 59', '60+')) %>%
add_predictions(M_cat_bayes)

#> # A tibble: 4 x 2
#> age pred[,"P(Y = other)"] [,"P(Y = app)"] [,"P(Y = internet)"] [,"P(Y = tv)"] [,"P(Y = weather_channel)"]
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 18 - 29 0.0455 0.535 0.193 0.082 0.144
#> 2 30 - 44 0.0365 0.523 0.134 0.164 0.144
#> 3 45 - 59 0.0707 0.394 0.124 0.235 0.176
#> 4 60+ 0.135 0.309 0.138 0.283 0.135

References
Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. New York, NY: Springer.

Fair, Ray C. 1978. “A Theory of Extramarital Affairs.” Journal of Political Economy 86 (1): 45–61.

Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. MIT press.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. Fourth. New York: Springer.

31

	Introduction
	Binary logistic regression
	Maximum likelihood estimation
	Binary logistic regression using R
	Predictions in binary logistic regression
	Risk ratios and odds ratios
	Model comparison
	Bayesian approaches to logistic regression
	Latent variable formulation
	Probit regression

	Ordinal logistic regression
	Ordinal logistic regression in R
	Odds ratios
	Bayesian ordinal logistic regression

	Categorical (multinomial) logistic regression
	Categorical logistic regression using R
	Bayesian categorical logistic regression

	References

