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Introduction
Multilevel models are a broad class of models that are applied to data that consist of sub-groups or clusters,
including when these clusters are hierarchically arranged. Although they have been in existence for decades,
they have become very widely used within the last 10 to 20 years due to computational advances. They
are are now a major statistical modelling tool in the social sciences as well many other fields of research. A
number of related terms are used to describe multilevel models: hierarchical models, mixed effects models,
random effects models, and more. These terms are not strictly synonymous but do describe models that are
all related to the general concept of a multilevel model. Here, we will prefer to use the term multilevel model
as the main general term for these models. We will also use the term hierarchical model, at least a certain
sense of the term, as essentially synonymous to multilevel model, and we’ll use the term mixed effect models,
or mixed effect regression, as the term for a particular widely used variant of the multilevel regression model.

As we will see, the defining feature of multilevel models is that they are models of models. In other words, for
each cluster or sub-group in our data we create a statistical model, and then model how these statistical
models vary across the clusters or sub-groups. We will begin our coverage of multilevel models by exploring
random effects models. These are some of the simplest types of multilevel models, but yet they can make
clear the key defining characteristics of the multilevel models generally. We then proceed to cover multilevel
linear models, which are often referred to a linear mixed effects models. We will also describe how to perform
Bayesian versions of these models.

Random effects models
Let us consider the following data set, which is on rat tumours.
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rats_df <- read_csv('data/rats.csv',
col_types = cols(batch = col_character())

)
rats_df
#> # A tibble: 71 x 3
#> batch m n
#> <chr> <dbl> <dbl>
#> 1 1 0 20
#> 2 2 0 20
#> 3 3 0 20
#> 4 4 0 20
#> 5 5 0 20
#> 6 6 0 20
#> 7 7 0 20
#> 8 8 0 19
#> 9 9 0 19
#> 10 10 0 19
#> # ... with 61 more rows

This data set consists of data from J = 71 batches of rats. For each batch, we have the number of rats in it
(n) and the number of rats in the batch that developed tumours (m). Let us begin by focusing in on a single
batch.

rats_df_42 <- filter(rats_df, batch == '42')
rats_df_42
#> # A tibble: 1 x 3
#> batch m n
#> <chr> <dbl> <dbl>
#> 1 42 2 13

In this batch, out of 13 rats, the recorded number of tumours was 2. With these numbers alone, we can
provide a simple statistical model of the tumour rate in batch 42. In this model, we can say that there is a
fixed but unknown probability of a tumour in this batch, which we will denote by θ. In other words, each rat
in the batch of size n = 13 has probability θ of developing a tumour and so the recorded number of tumours,
m = 2, is a draw from a binomial distribution with parameter θ and size n = 13. In other words, our model
is a binomial model:

m ∼ Binom(θ, n).

This is identical to the following binomial logistic regression model.

m ∼ Binom(θ, n), log
(

θ

1− θ

)
= β.

This binomial model can be represented by the following diagram.

m

n

β

This kind of diagram is known as a Bayesian network. It is a directed acyclic graph showing each variable or
parameter in the model. The shaded nodes indicate that the corresponding variable is observed. From this
diagram we see that the variable m is conditionally dependent on n, which is observed, and β, which is not
observed and so must be inferred. While this diagram is very simple, it is useful to use it here to compare it
to other models that we will use below.

We can implement this binomial logistic model in R using glm.
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M <- glm(cbind(m, n-m) ~ 1,
data = rats_df_42,
family = binomial(link = 'logit')

)

Note that in this model, the left hand side of the ~ operator is cbind(m, n-m), where m gives the number
of rats in the batch that have tumours and n -m gives the number of rates in the batch who do not have
tumours. The command cbind is used to stack vectors side by side as columns, and so cbind(m, n-m)
creates a matrix with two columns. From this model M, we can see that our estimate of θ is as follows:

ilogit <- function(x) 1/(1 + exp(-x))
coef(M) %>% ilogit() %>% unname()
#> [1] 0.1538462

This is expected given that out of 13 rats in this batch, the recorded number of tumours was 2, which is a
proportion of 0.154.

We can now easily extend this model to apply to all batches in our data set. In other words, for each of our
J batches, where nj is the batch’s size, θj is its fixed but unknown probability of developing a tumour, and
mj is its recorded number of tumours, we have the following model:

mj ∼ Binom(θj , nj), log
(

θj
1− θj

)
= βj .

This is implemented using glm as follows.

M <- glm(cbind(m, n-m) ~ 0 + batch,
data = rats_df,
family = binomial(link = 'logit')

)

Using broom::tidy and some dplyr and related tools, we can look at the estimates and confidence intervals
for a random sample of 10 of the batches.

M_estimates <- tidy(M) %>%
select(term, beta = estimate) %>%
mutate(term = str_remove(term, 'batch'),

theta = ilogit(beta)) %>%
rename(batch = term)

M_estimates %>%
sample_n(10) %>%
arrange(beta) %>%
mutate_at(vars(beta,theta), ~round(., 2))

#> # A tibble: 10 x 3
#> batch beta theta
#> <chr> <dbl> <dbl>
#> 1 5 -27.8 0
#> 2 13 -27.6 0
#> 3 29 -2.2 0.1
#> 4 23 -2.08 0.11
#> 5 37 -2.01 0.12
#> 6 48 -1.39 0.2
#> 7 58 -1.13 0.24
#> 8 59 -1.1 0.25
#> 9 64 -0.85 0.3
#> 10 70 -0.51 0.37
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Although we have implemented a single glm model, this has effectively lead to J separate binomial models.
The Bayesian network diagram for these models is shown in the diagram in Figure 1.

m1

n1

β1

m2

n2

β2

· · ·

mj

nj

βj

· · ·

mJ

nJ

βJ

Figure 1: Inferring the log odds of a tumour βj in each of the J batches is identical to J independent binomial
models.

In other words, we have a model of the tumour rate for batch 1, another for batch 2, and so on. From this,
we do not have a model of the distribution of tumour rates across all batches. We do not, for example, have a
model that gives us the mean or standard deviation, or any other information, about the tumour rate across
all possible batches in this experiment, of which our set of 71 batches are a sample. In order to obtain this
model, we must perform a multilevel model.

A multilevel model extension of the binomial logistic regression model above is as follows.

for j ∈ 1 . . . J, mj ∼ Binom(θj , nj), log
(

θj
1− θj

)
= βj , βj ∼ N(b, τ2).

The crucial added feature here is that the log odds of the tumour probabilities is being modelled as normally
distributed with a mean of b and a standard deviation of τ . These dependencies are shown in the Bayesian
network diagram in Figure 2.
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b τ

Figure 2: The multilevel binomial logistic regression.

In this multilevel model, just as in the previous non-multilevel model, β1, β2, . . . βj . . . βJ have fixed but
unknown values. However, in addition, these values are modelled as all drawn from the same normal
distribution. The two important consequences of this are as follows. First, it provides a model of the
population from which β1, β2, . . . βj . . . βJ are a sample. Given that each βj effectively defines a model for
a batch of rats, then the normal distribution from which β1, β2 . . . βj . . . βJ are drawn is a model of models.
Amongst other things, this population model of the β’s allows to predict the log odds, or probability, of a
tumour for any future batch of rats, i.e. batch J + 1. Second, because we are assuming that β1, β2, . . . βj . . . βJ
are all drawn from the same normal distribution, this introduces constraints on the inference of the values of
each βj . In other words, to infer the value of βj , the observed values of mj and nj are not the only relevant
pieces of information. Now, the values of b and τ are also relevant, and because b and τ are also unknown, they
themselves must be inferred from β1, β2, . . . βj . . . βJ . This effectively means that the inferences concerning
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β1, β2, . . . βj . . . βJ are inter-dependent and mutually constrain one another. We will explore both of these
important general features of multilevel models below.

Given that we can rewrite βj ∼ N(b, τ2) as βj = b+ ξj where ξj ∼ N(0, τ2), we can rewrite the multilevel
model as

for j ∈ 1 . . . J, mj ∼ Binom(θj , nj), log
(

θj
1− θj

)
= b+ ξj , ξj ∼ N(0, τ2).

We can then implement this model using the glmer model that is part of the lme4 package.

library(lme4)
M_ml <- glmer(cbind(m, n-m) ~ 1 + (1|batch),

data = rats_df,
family = binomial(link = 'logit')

)

Before we proceed to examine the results of this model, let us first describe the formula syntax. The right
hand side of the formula is 1 + (1|batch). The first 1 indicates the intercept term of the model, which
is b. This is identical to how we indicate an intercept only model using lm, glm, etc. For example, if were
modelling a set of n values y1, y2 . . . yn as yi ∼ N(µ, σ2), we could write lm(y ~ 1). The (1|batch) is a
random intercepts statement. Specifically, in the case of glmer, it states that for each value of the batch
variable we have a constant term, and that these constant terms are normally distributed from a zero mean
normal distribution. As such, (1|batch) gives us the ξj ∼ N(0, τ2) for each of the J batches.

Let us look at the summary of this model.

summary(M_ml)
#> Generalized linear mixed model fit by maximum likelihood (Laplace
#> Approximation) [glmerMod]
#> Family: binomial ( logit )
#> Formula: cbind(m, n - m) ~ 1 + (1 | batch)
#> Data: rats_df
#>
#> AIC BIC logLik deviance df.resid
#> 319.9 324.4 -157.9 315.9 69
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -1.2392 -0.6230 -0.1055 0.4795 1.0253
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> batch (Intercept) 0.4417 0.6646
#> Number of obs: 71, groups: batch, 71
#>
#> Fixed effects:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.9369 0.1211 -16 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first thing to note is the estimated value of b, which is listed as the estimate of the intercept term in
the Fixed effects section. We see that this has the value of -1.937. The estimate of τ and τ2, on the
other hand, are given by the Std.Dev. and Variance terms for the (Intercept) for batch in the Random
effects section. We see that the of τ is 0.665. As such, our model of the distribution of the log odds of the
tumours is a normal distribution whose mean and standard deviation are estimated to be -1.937 and 0.665,
respectively. The translates into the probability distribution over the probabilities of tumours that we see in
Figure 3.
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Figure 3: The estimate of the population distribution over θ for the rats tumour multilevel model.

Given that this normal distribution with mean b = −1.937 and standard deviation τ = 0.665 is a model of
the population from which the β1, β2 . . . βj . . . βJ are drawn, then we can make statements like the following.
The expected value of the log odds of a tumour in a future batch of rats is -1.937 and with 95% probability,
this log odds is between -3.239 and -0.634. Equivalently, the expected value of the probability of a tumour in
a future batch of rats is 0.126 and with 95% probability, this probability is between 0.038 and 0.347.

From this model, we can also obtain the estimates of ξ1, ξ2 . . . ξj . . . ξJ from the model by using the ranef
command.

ranef(M_ml)$batch %>%
head()

#> (Intercept)
#> 1 -0.6298720
#> 10 -0.6096908
#> 11 -0.6096908
#> 12 -0.5888596
#> 13 -0.5888596
#> 14 -0.5673326

We may obtain the estimates of b using the fixef command.

b <- fixef(M_ml)

We may then add on the estimates of b to get the estimates of β1, β2 . . . βj . . . βJ .

b + ranef(M_ml)$batch %>%
head()

#> (Intercept)
#> 1 -2.566785
#> 10 -2.546604
#> 11 -2.546604
#> 12 -2.525773
#> 13 -2.525773
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#> 14 -2.504246

We may obtain the estimates of β1, β2 . . . βj . . . βJ more directly by using the coef command.

M_ml_estimates <- coef(M_ml)$batch

M_ml_estimates %>%
head()

#> (Intercept)
#> 1 -2.566785
#> 10 -2.546604
#> 11 -2.546604
#> 12 -2.525773
#> 13 -2.525773
#> 14 -2.504246

Comparing these values to the corresponding values in the non-multilevel model, we can see how the estimates
of β1, β2 . . . βj . . . βJ mutually constrain one another. This phenomenon is an example of shrinkage. In this
model, it is easier to visualize this effect if we look at θ1, θ2 . . . θj . . . θJ , which are simply the inverse logit
transforms of β1, β2 . . . βj . . . βJ . In Figure 4, we compare the estimates of θ1, θ2 . . . θj . . . θJ from the flat or
non-multilevel model M against those of the multilevel model M_ml.

0.0

0.1

0.2

0.3

flat multilevel
model type

θ

Figure 4: Estimates for θ1, θ2 . . . θj . . . θJ from the flat or non-multilevel model (left) and the multilevel model
(right).

As we can see, the estimates for θ1, θ2 . . . θj . . . θJ , and hence also for β1, β2 . . . βj . . . βJ , in the case of the
multilevel model are brought closer together towards the centre compared to the non-multilevel model.

To understand why this phenomenon occurs, let us compare the likelihood functions for the non-multilevel
and the multilevel model. In the non-multilevel model, there are J unknowns: β1, β1 . . . βj . . . βJ , and given
the observed data, the likelihood function is

J∏
j=1

P(mj |nj , βj).
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Maximising this function with respect to βj is equivalent to maximizing P(mj |nj , βj) with respect to βj , which
is β̂j = logit(mj/nj). On the other hand, in the multilevel model, there are J+2 unknowns: β1, β1 . . . βj . . . βJ ,
b and τ , and the likelihood function is

J∏
j=1

P(mj |nj , βj)P(βj |b, τ).

Maximising this function with respect to βj is equivalent to maximizing P(mj |nj , βj)P(βj |b, τ), which is a
compromise between maximizing P(mj |nj , βj) and maximizing P(βj |b, τ), with the latter being maximized
as βj becomes closer to b. Maximising the multilevel model’s likelihood with respect to b is equivalent
to maximizing

∏J
j=1 P(βj |b, τ) with respect to b, which occurs at b̂ = 1

J

∑J
j=1 βj . From this, we see that

the estimate of each βj is based on the value of mj and nj , but is also pulled towards the average of
β1, β1 . . . βj . . . βJ .

Normal random effects models
Let us now consider a new data set.

alcohol_df <- read_csv('data/alcohol.csv')
alcohol_df
#> # A tibble: 411 x 3
#> country year alcohol
#> <chr> <dbl> <dbl>
#> 1 Russia 1985 13.3
#> 2 Russia 1986 10.8
#> 3 Russia 1987 11.0
#> 4 Russia 1988 11.6
#> 5 Russia 1989 12.0
#> 6 Chile 1990 9.43
#> 7 Ecuador 1990 8.4
#> 8 Greece 1990 12.5
#> 9 Russia 1990 12.3
#> 10 Russia 1991 12.7
#> # ... with 401 more rows

In this, we have the per capita average alcohol consumption in J = 189 countries in K = 22 different years,
though we do not necessarily have data from each country in each year. Let us denote the per capita alcohol
values by y1, y2 . . . yi . . . yn. For each yi, we have an indicator variable xi ∈ 1 . . . J , which indicates the country
that yi corresponds to. An initial model for y1, y2 . . . yi . . . yn could then be

yi ∼ N(µ[xi], σ
2), for i ∈ 1 . . . n,

where µ1, µ2 . . . µj . . . µJ are the country alcohol per capita consumption averages for the J countries. This
model be represented by the Bayesian network diagram shown in Figure 5. This is a non-multilevel model
because the alcohol consumption averages in each country are being modelled independently of those of other
countries. In this model, however, we do assume that the standard deviations of the alcohol consumption
values across all countries are the same, and given by σ, whose value is fixed but unknown. What this entails,
therefore, is that this model is a one-way Anova model with the standard homogeneity of variance assumption.

A multilevel counterpart to the above model would be as follows.

yi ∼ N(µ[xi], σ
2), for i ∈ 1 . . . n,

µj ∼ N(φ, τ2), for j ∈ 1 . . . J.

This model, which is depicted by a Bayesian network diagram in Figure 6, extends the previous one by
assuming that the µ1, µ2 . . . µj . . . µJ are drawn from a normal distribution with mean φ and standard
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y1 y2 y3 · · · yi yi+1 · · · yn−1 yn

µ1 µ2 µj µJ

σ

Figure 5: A non-multilevel model for average alcohol consumption across countries. The y1, y2 . . . yn variables
are alcohol consumption averages for J different countries over different years. As depicted here, we are
assuming that y1 and y2 represent averages for the same country, country j = 1, two different years. The
overall average for this country is given by µ1, whose value is unknown. This non-multilevel model is identical
to a one-way anova model with J groups. The common standard deviation term σ is simply the homogeneity
of variance assumption of the one-way anova.

deviation of τ . Given that yi can be rewritten as yi = µ[xi] + εi, where εi ∼ N(0, σ2), and that µj can be
rewritten as µj = φ+ ξj where ξj ∼ N(0, τ2), we can rewrite the above model as

yi = φ+ ξ[xi] + εi, for i ∈ 1 . . . n,

where each ξj ∼ N(0, τ2) and each εi ∼ N(0, σ2). Here, φ signifies the global average per capita alcohol
consumption rate. Each ξj is the random offset of country j from φ, and each εi is the residual error for each
observation. In this model, the residual error εi gives the random year by year deviation from the country
xi’s average consumption rate.

y1 y2 y3 · · · yi yi+1 · · · yn−1 yn

µ1 µ2 µj µJ

σ

φτ

Figure 6: A multilevel model for average alcohol consumption across. This model is an extension of the
non-multilevel model shown in Figure 5 by modelling the µ1, µ2 . . . µj . . . µJ as samples from a normal
distribution with mean φ and standard deviation τ .

We can implement this model using lme4::lmer as follows.

M_ml <- lmer(alcohol ~ 1 + (1|country),
data = alcohol_df)
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summary(M_ml)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: alcohol ~ 1 + (1 | country)
#> Data: alcohol_df
#>
#> REML criterion at convergence: 1918.2
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -3.4661 -0.1582 -0.0719 0.1642 5.9576
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> country (Intercept) 22.208 4.713
#> Residual 1.108 1.053
#> Number of obs: 411, groups: country, 189
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 6.6612 0.3469 19.2

As we can see from the (Intercept) estimate in the Fixed effects and the Std.Dev. for country in the
Random effects, the normal distribution of the µ values has a mean of φ = 6.661 and standard deviation of
τ = 4.713. The residual standard deviation σ is given by the Std.Dev. for Residual in the Random effects,
and has the value of σ = 1.053.

Given the nature of the random effects model, i.e. each yi is modelled as yi = φ+ ξ[xi] + εi, the variance of y
is equal to τ2 + σ2. The value

τ2

τ2 + σ2

is known as the intraclass correlation (icc), which takes on values between 0 and 1. Obviously, icc tells us
how much of the total variance in the data is due to variation between the countries. If the icc is relatively
high, and so τ2/σ2 is relatively high, the observed values within countries will be close together relative to
the between country averages, and thus there will be relatively high clustering of the data. In this data, the
icc is 0.95.

One consequence of a high icc, and specifically a high value of τ2 relative to σ2, is that shrinkage effects will
be less. This can be seen in Figure 7 where we compare the estimates of each µj from the non-multilevel
and multilevel models. In more detail, in a normal random effects model, the estimate of a µj will be
approximately as follows (see Gelman and Hill (2007), p253, for details):

µj ≈
nj

σ2 ȳj + 1
τ2 ȳ

nj

σ2 + 1
τ2

,

where ȳj is the average of the yi values corresponding to country j, and ȳ is overall average of the yi values.
In general, when τ2 is large relative to σ2, the influence of the global average ȳ on µj will be minimal. This
will be especially the case as nj gets larger.

Linear mixed effects models
We will now consider multilevel linear regression models. These are often referred to as linear mixed effects
models, for reasons that will be clear after we describe them in more detail. As with random effects models,
these models are best introduced by way of example. For this, we will use he sleepstudy data set from lme4,
which provides the average reaction time for each person on each day of a sleep deprivation experiment that
lasted 10 days.
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Figure 7: Estimates for µ1, µ2 . . . µj . . . µJ from the flat or non-multilevel model (left) and the multilevel
model (right). Shrinkage effects are minimal due to the high value of τ2 relative to σ2.

sleepstudy <- lme4::sleepstudy %>%
as_tibble()

sleepstudy
#> # A tibble: 180 x 3
#> Reaction Days Subject
#> <dbl> <dbl> <fct>
#> 1 250. 0 308
#> 2 259. 1 308
#> 3 251. 2 308
#> 4 321. 3 308
#> 5 357. 4 308
#> 6 415. 5 308
#> 7 382. 6 308
#> 8 290. 7 308
#> 9 431. 8 308
#> 10 466. 9 308
#> # ... with 170 more rows

This data is displayed in Figure 8.

To begin our analysis, let us first focus on one arbitrarily chosen experimental subject, namely subject 350.

sleepstudy_350 <- sleepstudy %>%
filter(Subject == 350)

sleepstudy_350
#> # A tibble: 10 x 3
#> Reaction Days Subject
#> <dbl> <dbl> <fct>
#> 1 256. 0 350
#> 2 243. 1 350
#> 3 256. 2 350
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Figure 8: Each figure shows the average reaction time data from a subject in sleep deprivation on each day of
the 10 day experiment.

#> 4 256. 3 350
#> 5 269. 4 350
#> 6 330. 5 350
#> 7 379. 6 350
#> 8 363. 7 350
#> 9 394. 8 350
#> 10 389. 9 350

The trend over time in this subject’s average reaction time can be modelled using the following normal linear
model:

yd ∼ N(µd, σ2), µd = β0 + β1xd, for d ∈ 1 . . . n,

where yd represents the subject’s reaction time on their dth observation, and xd ∈ {0, 2, . . . n = 9} indicates
the day when this observation happened. Using ~β = [β0, β1]ᵀ, we can represent this model using a Bayesian
network diagram as we do in Figure 9. In that figure, we provide two equivalent diagrams, with Figure 9b
using a plate notation that denotes a repetition of nodes within a bounding plate according to an index,
which in this case is d ∈ 1 . . . n. This model is implemented in R as follows.

M_350 <- lm(Reaction ~ Days, data = sleepstudy_350)

The estimated values of the coefficients are as follows.

coef(M_350)
#> (Intercept) Days
#> 225.83460 19.50402
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Thus, we estimate that the average reaction time of subject 350 increases by 19.5 on each day of study. In
addition, because the first day of the study was indicated by xi = 0, this subject’s average reaction prior to
any sleep deprivation was 225.83.

y1 y2 . . . yn

x1 x2 . . . xn

~β σ

(a)

yd

xd

d ∈ 1 . . . n

~β σ

(b)

Figure 9: Two equivalent Bayesian network diagrams representing a normal linear model with one predictor
variable. Diagram b) uses a compact plate notation whereby all variables within the plate are repeated for all
values of the index i, which takes values from 1 to n.

Were we to provide a similar model for each subject in the experiment, whom we will index by j ∈ 1 . . . J ,
this would lead to J independent normal linear models. If we denote the average reaction time on observation
d for subject j by yjd, this set of models is as follows.

yjd ∼ N(µjd, σ2
j ), µjd = βj0 + βj1xjd, for j ∈ 1 . . . J , for d ∈ 1 . . . nj .

Note that here we have J data sets, one for each each subject in the experiment, and d is used to index the
observations within each one. Thus, for the jth data-set, d ranges from 1 to nj . This model is represented in
a Bayesian network diagram in Figure 10a. If we assume that there is a common residual standard deviation
term σ, rather than one per each of the J subjects, this model is identical to a varying intercept and varying
slope linear model. These models are linear regression models whose intercepts and slopes vary according to
a categorical variable, which in this case is the Subject variable. Using R, we can implement this model as
follows.

M_flat <- lm(Reaction ~ 0 + Subject + Subject:Days, data = sleepstudy)

Note that the 0 + Subject in the formula ensures that we obtain a separate intercept term for each subject,
rather than one subject being the base level and all others being represented as offsets from this base. Likewise,
the Subject:Days ensures that we obtain a separate slope for each subject. Formally, this model is equivalent
to

yjd ∼ N(µjd, σ2), µjd = βj0 + βj1xjd, for j ∈ 1 . . . J , for d ∈ 1 . . . nj ,

and we have provided a Bayesian network diagram of it in Figure 10b. We can see that it is identical to that
represented in 10a with the exception of the shared standard deviation σ. In other words, a (non-multilevel)
varying intercept and varying slope model, where the intercepts and slopes vary by subject, is identical to a
set of independent linear models, one per each subject, but with a single standard deviation term σ shared
across all subjects.

Let us now consider a multilevel variant of this non-multilevel varying intercept and slope model. In this, we
assume that the vector of coefficients ~βj = [βj0, βj1]ᵀ is drawn from a multivariate Normal distribution with
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Figure 10: Bayesian network diagrams for a) a set of J independent normal linear models, and b) a varying
slope and varying intercept linear model whereby the slope and intercept vary by a categorical variable with
J levels.

mean vector ~b and covariance matrix Σ. This model can be written as follows.

yjd ∼ N(µjd, σ), µjd = βj0 + βj1xjd, for j ∈ 1 . . . J , for d ∈ 1 . . . nj ,,
~βj ∼ N(~b,Σ) for j ∈ 1 . . . J ,

The Bayesian network diagram for this model is shown in Figure 11. As we can see, this is an extension of
the Bayesian network diagram in Figure 10b, with the extension being that each ~βj are modelled as functions
of ~b and Σ.

We can rewrite this multilevel model in the following manner.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = β[si]0 + β[si]1xi,

for j ∈ 1 . . . J , ~βj ∼ N(~b,Σ).

Note that here the i index ranges over all values in the entire data-set, i.e. i ∈ 1, 2 . . . n, and each si ∈ 1, 2 . . . J
is an indicator variable that indicates the identity of the subject on observation i. This notation with a single
subscript per observation and indicator variables is more extensible, especially for complex models. Using this
new notation, given that ~βj ∼ N(~b,Σ), we can rewrite ~βj as ~βj = ~b+ ~ζj where ~ζj ∼ N(0,Σ). Substituting
~b+ ζj for ~β, and thus substituting b0 + ζj0 and b1 + ζj1 for βj0 and βj1, respectively, we have the following
model.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = β[si]0 + β[si]1xi,

µi = b0 + ζ[si]0 + (b1 + ζ[si]1)xi,
= b0 + b1xi︸ ︷︷ ︸

fixed effects

+ ζ[si]0 + ζ[si]1xi︸ ︷︷ ︸
random effects

,

for j ∈ 1 . . . J , ~ζj ∼ N(0,Σ).
As we can see from this, a multilevel normal linear model is equivalent to a non-multilevel model (the fixed
effects models) plus a normally distributed random variation to the intercept and slope for each subject
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Figure 11: Bayesian network diagrams for a multilevel varying slopes and intercepts linear model.

(the random effects). The fixed effects are sometimes known as population level effects: they apply to all
observations. The random effects, on the other hand, vary across each different value of the grouping variable,
which in this example is an individual participant in the experiment. Put another way, the fixed effects give
the average effects in the population. The extent to which each individual varies around this average is given
by the random effects. That the multilevel linear model can be described in terms of fixed and random effects
is why these models are known as a linear mixed effects model.

We can implement this model in R using lme4::lmer.

M_ml <- lmer(Reaction ~ Days + (Days|Subject),
data = sleepstudy)

The syntax here matches the fixed and random effects description of the model. The Reaction ~ Days
tells us that the fixed effects model is a simple linear regression model with one predictor, and so with one
intercept and one slope term. The (Days|Subjects) tells us that there is random variation to the slope for
Days and implicitly there’s also random variation to the intercept term. We could make the variation to
the intercept term explicit by writing (1 + Days|Subject), which is identical to (Days|Subject) because
the 1 + is included always by default just as it is included by default in fixed effects part, as it is in any R
regression formula syntax.

The results of this model is obtained as follows.

summary(M_ml)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: sleepstudy
#>
#> REML criterion at convergence: 1743.6
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
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#> -3.9536 -0.4634 0.0231 0.4634 5.1793
#>
#> Random effects:
#> Groups Name Variance Std.Dev. Corr
#> Subject (Intercept) 612.10 24.741
#> Days 35.07 5.922 0.07
#> Residual 654.94 25.592
#> Number of obs: 180, groups: Subject, 18
#>
#> Fixed effects:
#> Estimate Std. Error t value
#> (Intercept) 251.405 6.825 36.838
#> Days 10.467 1.546 6.771
#>
#> Correlation of Fixed Effects:
#> (Intr)
#> Days -0.138

The value of ~b is available under Estimate in the Fixed effects, and we can get these directly as follows.

b <- fixef(M_ml)
b
#> (Intercept) Days
#> 251.40510 10.46729

Thus, the average effect of sleep deprivation on reaction time across all individuals is that their reaction time
increases by 10.47 each day. Also, the average individual has an average reaction time of 251.41 on day 0
of the experiment, which means that this is the average reaction time of the average person generally. The
values in the covariance matrix Σ and of the residual standard deviation σ can be obtained from the values
provided under Random effects. These are available more directly as follows.

VarCorr(M_ml)
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.7407
#> Days 5.9221 0.066
#> Residual 25.5918

Note that the covariance matrix is defined as follows.

Σ =
[
τ2

0 τ0ρτ1
τ0ρτ1 τ2

1

]
.

We can obtain this directly as follows.

VarCorr(M_ml)$Subject %>%
Matrix::bdiag() %>%
as.matrix()

#> (Intercept) Days
#> (Intercept) 612.100158 9.604409
#> Days 9.604409 35.071714

The values of the standard deviations τ0 and τ1 are also available as follows.

s <- VarCorr(M_ml)$Subject %>% attr('stddev')
s
#> (Intercept) Days
#> 24.740658 5.922138

The correlation matrix corresponding to Σ is obtained as follows.
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P <- VarCorr(M_ml)$Subject %>% attr('correlation')
P
#> (Intercept) Days
#> (Intercept) 1.00000000 0.06555124
#> Days 0.06555124 1.00000000

From this, we have ρ = Σ12 = Σ21 = 0.066. More generally, given that

Σ =
[
τ2

0 τ0ρτ1
τ0ρτ1 τ2

1

]
=
[
τ0 0
0 τ1

] [
0 ρ
ρ 1

]
︸ ︷︷ ︸

corr. matrix

[
τ0 0
0 τ1

]
,

we can also obtain Σ as follows:

# create a diagonal matrix of the stddev
s <- diag(s)

Sigma <- s %*% P %*% s
Sigma
#> [,1] [,2]
#> [1,] 612.100158 9.604409
#> [2,] 9.604409 35.071714

The contours of the 2d normal distribution with mean vector ~b and covariance matrix Σ are shown in Figure
12.

The estimates of each ~βj for j ∈ 1 . . . J can be obtained using the coef function.

coef(M_ml)$Subject %>%
head()

#> (Intercept) Days
#> 308 253.6637 19.666262
#> 309 211.0064 1.847605
#> 310 212.4447 5.018429
#> 330 275.0957 5.652936
#> 331 273.6654 7.397374
#> 332 260.4447 10.195109

These estimates are superimposed on the contours of the 2d normal distribution in Figure 12. They are
represented by the tip of the arrow corresponding to each subject. The base of the arrow, by contrast,
represents the estimates of the coefficients in the non-multilevel varying-intercept and varying-slope model.
As we can see, the estimates in the multilevel model are shrunk towards the centre of the N(~b,Σ) distribution.

Inference
The multilevel model above, i.e.,

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = b0 + b1xi︸ ︷︷ ︸

fixed effects

+ ζ[si]0 + ζ[si]1xi︸ ︷︷ ︸
random effects

,

for j ∈ 1 . . . J , ~ζj ∼ N(0,Σ),

can be rewritten in matrix notation as follows:

~y = X~b+ Z~γ + ~ε, ~γ ∼ N(0,Ω), ~ε ∼ N(0, Inσ2).

Here, ~y is an n× 1 (column) vector. The matrix X is a n× 2 matrix whose first column is a vector where
each value is 1 and the second column is ~x = [x1, x2 . . . xn]ᵀ. The matrix Z is a n× 2J matrix. It is easiest
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Figure 12: The contour plot shows the contours of the 2d normal distribution centered at ~b and whose
covariance matrix is Σ. Superimposed on this are the estimates of the coefficients of each subject, both in the
non-multilevel model (base of arrow) and in the multilevel model (tip of arrow). As we can see, the estimates
of the coefficients in the multilevel are all shrunk towards the overall mean ~b.

to understand if viewed as the horizontal concatenation of two n× J matrices, Z0 and Z1:

Z = [Z0, Z1].

Row i and column j of Z0 is Z0
ij , which takes the value of 1 if and only if si = j. In other words, each row i

of Z0 is a J dimensional (row) vector whose values are all zero with the exception of one element, namely
element si, whose value is 1. Likewise, in matrix Z1, each row i is a J dimensional (row) vector whose values
are all zero with the exception of one element, namely element si, whose value is xi. The vector ~γ is 2J × 1
vector, and is easiest to understand at the vertical concatenation of two J × 1 vectors:

~γ =
[
~γ0
~γ1

]
.

The vector ~γ0 = [ζ1,0, ζ2,0 . . . ζj,0 . . . ζJ,0]ᵀ, where ζj,0 is the first element of ~ζj from the original description of
the model. Likewise, the vector ~γ1 = [ζ1,1, ζ2,1 . . . ζj,1 . . . ζJ,1]ᵀ, where ζj,1 is the second element of ~ζj . The
~γ is random vector with a 2J dimensional multivariate normal distribution with a zero mean vector and
whose covariance matrix Ω has a Σ[1,1] as in its first J elements and Σ2,2 and its remaining J elements. Its
off-diagonal elements are zero except for elements Ω[j,J+j] and Ω[J+j,j], for each j ∈ 1...J , whose values are
all Σ[2,2]. The n × 1 vector ~ε is also a random vector distributed as a n dimensional multivariate normal
distribution with zero mean vector and a covariance matrix Inσ2 where In is the n dimensional identity
matrix. In other words, this is a diagonal matrix whose diagonal elements are all equal to σ2.

From this, we have that ~y has a multivariate normal distribution:

~y ∼ N(X~b, V ), V = ZΩZᵀ + Inσ
2,
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where V is a n× n covariance matrix. The density function for ~y is

P(~y|X~b, V ) = 1
(2π)n/2|V |1/2 e

− 1
2 (~y−X~b)ᵀV −1(~y−X~b),

and so the log the likelihood with respect to ~b and V is

L(~b, V |~y,X) ∝ − 1
2

(
log |V −1|+ (~y −X~b)ᵀV −1(~y −X~b)

)
.

If we knew V , then the maximum likelihood estimator of ~b, b̂, is

b̂ = (Xᵀ
V

−1
X)−1

X
ᵀ
V −1~y.

Setting ~b in the likelihood function equal to b̂ gives the profile likelihood function, which may be then
maximized with respect to the parameters of V , which are ultimately based on the parameters Σ and σ.

The maximum likelihood estimate for variance parameters are biased, however. As an alternative to the
likelihood function, the restricted (also known as, residual) maximum likelihood (reml) estimates are often
used. These are obtained by maximizing the following variant of the likelihood function:

Lreml(~b, V |~y,X) ∝ − 1
2

(
log |V −1|+ (~y −X~b)ᵀV −1(~y −X~b) + log |Xᵀ

V −1X|
)
.

Maximising this with respect to ~b leads to the same solution as above, but the estimates of the variance
parameters are unbiased.

Varying intercepts or varying slopes only models
The above model allowed for random variation in both the intercepts and slopes but we can choose to have
random variation in only one or the other. A varying intercept only multilevel model is defined as follows.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = β[si]0 + b1xi,

for j ∈ 1 . . . J , βj0 ∼ N(b0, τ
2
0 ),

which can be rewritten, using the same reasoning as above,

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = b0 + b1xi + ζ[si]0,

for j ∈ 1 . . . J , ζj0 ∼ N(0, τ2
0 ).

Using lmer, we would implement this as follows.

M_ml_vi <- lmer(Reaction ~ Days + (1|Subject),
data = sleepstudy)

The fixed effects give us an estimate of the slope and intercept as before.

fixef(M_ml_vi)
#> (Intercept) Days
#> 251.40510 10.46729

The random effects just provide a measure of standard deviation τ0 for the random intercepts as well as
residual standard deviation σ.

VarCorr(M_ml_vi)
#> Groups Name Std.Dev.
#> Subject (Intercept) 37.124
#> Residual 30.991
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Absent here, compared to the varying intercepts and varying slopes model is the estimate for τ1 and ρ. The
estimates of the coefficients are obtained using coef, as before.

coef(M_ml_vi)$Subject %>%
head()

#> (Intercept) Days
#> 308 292.1888 10.46729
#> 309 173.5556 10.46729
#> 310 188.2965 10.46729
#> 330 255.8115 10.46729
#> 331 261.6213 10.46729
#> 332 259.6263 10.46729

As we can see, all the subjects’ slopes are identical and have the value of the estimate of b1, which is 10.467.
The lines corresponding to these coefficients are shown in Figure 13a.

The varying slope only multilevel model allows only the slopes to vary across subjects and it leaves the
intercepts fixed. It is defined as follows.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = b0 + β[si]1 + xi,

for j ∈ 1 . . . J , βj1 ∼ N(b0, τ
2
1 ),

which can be rewritten
for i ∈ 1 . . . n, yi ∼ N(µi, σ2),

µi = b0 + b1xi + ζ[si]1xi,

for j ∈ 1 . . . J , ζj1 ∼ N(0, τ2
1 ).

Using lmer, we would implement this as follows.

M_ml_vs <- lmer(Reaction ~ Days + (0+Days|Subject),
data = sleepstudy)

The fixed effects give us an estimate of both the slope and intercept as with the previous models.

fixef(M_ml_vs)
#> (Intercept) Days
#> 251.40510 10.46729

The random effect provide a measure of standard deviation τ1 and σ.

VarCorr(M_ml_vs)
#> Groups Name Std.Dev.
#> Subject Days 7.260
#> Residual 29.018

Absent here compared to the full model is the estimate for τ0 and ρ. The estimates of the coefficients are
obtained using coef as before.

coef(M_ml_vs)$Subject %>%
head()

#> (Intercept) Days
#> 308 251.4051 20.0866918
#> 309 251.4051 -4.2326711
#> 310 251.4051 -0.8189202
#> 330 251.4051 9.1273878
#> 331 251.4051 10.6754843
#> 332 251.4051 11.5352979
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Here, all the subjects’ intercepts are identical and have the value of the estimate of b0, which is 251.405. The
lines corresponding to these coefficients are shown in Figure 13b.
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Figure 13: Lines of best fit for each data group in a varying intercepts only a) or varying slopes only b)
multilevel linear model.

One final variant of the full model is where we allow for both varying slopes and intercepts but assume no
correlation between each βj0 and βj1. In other words, we assume that these are drawn from independent
normal distributions.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = β[si]0 + β[si]1xi,

for j ∈ 1 . . . J , βj0 ∼ N(b0, τ
2
0 ),

βj1 ∼ N(b1, τ
2
1 ),

which is identical to each βj vector being drawn from a diagonal covariance matrix, i.e. where ρ = 0.

Using lmer, we would implement this as follows.

M_ml_diag <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject),
data = sleepstudy)

We can obtain the same model using the following formula syntax.

M_ml_diag2 <- lmer(Reaction ~ Days + (Days||Subject),
data = sleepstudy)

The fixed effects give us an estimate of both the slope and intercept as with each of the previous models.

fixef(M_ml_diag2)
#> (Intercept) Days
#> 251.40510 10.46729

The random effect provide a measure of the τ0, τ1 and σ standard deviations.

VarCorr(M_ml_diag2)
#> Groups Name Std.Dev.
#> Subject (Intercept) 25.0513
#> Subject.1 Days 5.9882
#> Residual 25.5653
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The only quantity that is absent here compared to the full model is the estimate for ρ. The estimates of the
coefficients are obtained using coef as before.

coef(M_ml_diag2)$Subject %>%
head()

#> (Intercept) Days
#> 308 252.9178 19.790783
#> 309 211.0312 1.868110
#> 310 212.2241 5.079492
#> 330 275.9240 5.498636
#> 331 274.3196 7.273348
#> 332 260.6271 10.158792

Here, both the intercepts and slopes vary across subjects.

Models for nested and crossed data
In all the examples considered thus far, our multilevel models had only two levels, which we can denote
level 0 and level 1. For example, we had rats (level 0) within batches (level 1), observations of per capita
alcohol consumption in different years (level 0) within different countries (level 1), individual observations of
reaction times on different days (level 0) grouped by different experimental subjects (level 1). We can easily
have groups within groups, and we usually refer to these models as nested multilevel models. Here, we will
consider nested linear mixed effects models.

Let us consider the following data which is based on a subset of the classroom data made available in R
package WWGbook.

classroom_df <- read_csv('data/classroom.csv')
classroom_df
#> # A tibble: 1,190 x 5
#> mathscore ses classid schoolid classid2
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 480 0.46 160 1 1
#> 2 569 -0.27 160 1 1
#> 3 567 -0.03 160 1 1
#> 4 532 -0.38 217 1 2
#> 5 478 -0.03 217 1 2
#> 6 515 0.76 217 1 2
#> 7 503 -0.03 217 1 2
#> 8 509 0.2 217 1 2
#> 9 510 0.64 217 1 2
#> 10 473 0.13 217 1 2
#> # ... with 1,180 more rows

Each observation is of a child (level 0), and for each one we have their mathematics test score in their first
grade (mathscore) and their home socioeconomic status (ses). There are n children in total, indexed by
i ∈ 1 . . . n. Each child is in one of J classes (level 1, denoted by classid), and each class is within one of K
schools (level 2, denoted by schoolid). This hierarchical arrangement of the data is shown in Figure 14.

The relationship between ses and mathscore can vary across different schools, see Figure 15a. Furthermore,
within each school, there may be variation in the effect of ses on mathscore across different classes, see
Figure 15b. Formally, a three-level multilevel varying intercepts and slopes linear model corresponding to the
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Figure 14: The hierarchical arrangement of the data in the classroom_df data set. Each one of the N
children is in one of J classes and each one of the J classes is in one of K schools.

above problem may be presented as follows.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = γ[ci]0 + γ[ci]1xi,

for j ∈ 1 . . . J , ~γj ∼ N(~β[sj ],Σc),

for k ∈ 1 . . .K, ~βk ∼ N(~b,Σs),

For each one of the n children, we have their mathscore variable yi, their ses variable xi, and an indicator
variable ci ∈ 1 . . . J . The indicator variable indicates which of the J different classes the child is a member
of. For each of one of these J classes, we have another indicator variable sj ∈ 1 . . .K. This indicates the
school that class j is a member of. For example, if sj = k, this means that class j is within school k. From
this description, we see that there are J vectors of coefficients, i.e. ~γ1, ~γ2 . . . ~γJ , and each one corresponds
to one of the J different classes in the data set. Each vector ~γj is a sample from a multivariate normal
distribution centered at ~β[sj ], where sj is the school that class j is a member of. The covariance matrix of
this multivariate normal distribution is Σc. The K different vectors ~β1, ~β2 . . . ~βK are themselves drawn from
another multivariate normal distribution whose center is ~b and whose covariance matrix is Σs.

Using the same reasoning as above, we may rewrite ~γj ∼ N(~β[sj ],Σc) as ~γj = ~β[sj ] + ~ξj where ~ξj ∼ N(0,Σc).
Likewise, we may rewrite ~βk ∼ N(~b,Σs) as ~βk = ~b+ ~ζk where ~ζk ∼ N(0,Σs). Thus, we have

~γj = ~β[sj ] + ξj ,

= ~b+ ζ[sj ] + ξj .

This allows us to rewrite the original model as follows.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = b0 + b1xi︸ ︷︷ ︸

fixed effects

+ ζ[zi]0 + ζ[zi]1xi︸ ︷︷ ︸
school random effects

+ ξ[ci]0 + ξ[ci]1xi︸ ︷︷ ︸
class random effects

,

for j ∈ 1 . . . J , ~ξj ∼ N(0,Σc),

for k ∈ 1 . . .K, ~ζk ∼ N(0,Σs).

Here, for notational simplicity, we have used a new indicator variable zi = s[ci] ∈ 1 . . .K that indicates the
school that child i is a member of.

Using lmer, we can implement this model as follows.
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Figure 15: In each scatterplot in both subfigure a and b, the points represent individual children, and for each
one, we have their mathematics test score plotted against their home socioeconomic status. Each scatterplot
is from a different school. In subfigure a, the line of best fit for the children in the school is shown. In
subfigure b, a separate line of best fit for each class within each school is shown.
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M_classroom <- lmer(mathscore ~ ses + (ses|classid) + (ses|schoolid),
data = classroom_df)

As we can see, we simply use random effects terms, one for random variation by school and the other for
random variation by class. Before, we proceed, by examining the results of VarCorr, we see that there is a
perfect correlation between the random slopes and random intercepts due to class.

VarCorr(M_classroom)
#> Groups Name Std.Dev. Corr
#> classid (Intercept) 8.33529
#> ses 0.91453 1.000
#> schoolid (Intercept) 15.44468
#> ses 7.24255 0.443
#> Residual 32.90608

This indicates overparameterization in the model, and can be avoided by removing the possibility of a
correlation between the slopes and intercepts for class.

M_classroom <- lmer(mathscore ~ ses + (ses||classid) + (ses|schoolid),
data = classroom_df)

Now, just like previous linear mixed effects models, our fixed effects will consist of a single slope and intercept
term.

fixef(M_classroom)
#> (Intercept) ses
#> 522.82481 11.20433

From this, we see that at a population level, every unit increase in ses leads to a 11.2 increase in mathscore.
Information concerning the random effects are available from VarCorr.

VarCorr(M_classroom)
#> Groups Name Std.Dev. Corr
#> classid (Intercept) 8.3964
#> classid.1 ses 0.0000
#> schoolid (Intercept) 15.4398
#> ses 7.3039 0.470
#> Residual 32.8950

From this, amongst other things, we see there is a minimal random variation in the ses slopes across the
different classes.

The variable classid unambiguously identified the class of children by giving each class in each school
a unique identifier. In some cases, we do not have unique identifiers for nested groups. As an example,
consider the classid2 variable in the classroom_df data sets. Let us draw a sample of observations from
classroom_df.

classroom_df %>%
sample_n(10)

#> # A tibble: 10 x 5
#> mathscore ses classid schoolid classid2
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 524 0.290 41 14 1
#> 2 519 -0.03 102 26 2
#> 3 552 -0.03 149 53 2
#> 4 552 -0.61 42 75 2
#> 5 499 -0.24 117 55 3
#> 6 522 -0.05 223 29 2
#> 7 473 0.13 217 1 2
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#> 8 526 0.04 75 97 1
#> 9 557 0.8 29 72 1
#> 10 478 -0.03 217 1 2

Unlike classid, classid2 provides an identifier for each class that is relative to its school. Thus, we have
class 1 in school 41, and class 1 in school 97. These are completely unrelated classes. In order to deal with
variables like this, we must use an alternative formula syntax. For example, in order to have a varying
intercepts only model, where the intercept varies by class and school, and assuming we are using the classid2
variable, we use the following syntax in the formula to indicate that the values of classid2 are relative to
that of schoolid.

M_classroom_vi <- lmer(mathscore ~ ses + (1|schoolid/classid2),
data = classroom_df)

This is identical to the following model.

M_classroom_vi2 <- lmer(mathscore ~ ses + (1|schoolid) + (1|schoolid:classid2),
data = classroom_df)

The syntax in this second version makes it clear that we are effectively creating a unique identifier for
the class by combining the values of schoolid and classid2. These two models, M_classroom_vi and
M_classroom_vi2, are identical to that which would have been obtained had we used the unambiguous class
identifier classid as in the following model.

M_classroom_vi3 <- lmer(mathscore ~ ses + (1|schoolid) + (1|classid),
data = classroom_df)

An alternative multilevel arrangement of data is known as a crossed structure. Again, this is easiest to
illustrate by way of an example. Consider a type of cognitive psychology experiment known as a lexical
decision task, which is used to understand the basic cognitive processes involved in reading words. In this
experiment, multiple subjects are each shown multiple different letter strings, e.g. dinosaur, morhet, children,
etc., and they have to respond as to whether the string is a word or not, and their reaction times to do so are
also recorded. Thus, we would have subjects s1, s2 . . . sj . . . sJ being shown letter strings w1, w2 . . . wk . . . wK ,
and from each subject for each string, we have a response, e.g. a yes/no binary response, or reaction, or both.
Over the entire experiment, our total set of responses could be denoted r1, r2 . . . rn. These are our level 0
observations. Crucially, each response is cross classified as belonging to a particular subject and a particular
letter string. See Figure 16.

s1 s2 . . . sJ w1 w2 . . . wK

r1 r2 r3 ... rn

Figure 16: A crossed multilevel data arrangement, such as would arise in a lexical decision experiment. Each
ri is grouped under one of the s1, s2 . . . sJ and also one of the w1, w2 . . . wK .

In general, when dealing with crossed multilevel structures, we simply consider the random variation of slopes
or intercepts according to more than one grouping variable. As an example, consider the British Lexicon
Project data that we also considered in Chapter 3. This provides us with data from a large lexical decision
experiment, and a small fraction of this data is provided in the file data/blp-short2.csv.

blp_df <- read_csv('data/blp-short2.csv')
blp_df
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#> # A tibble: 662 x 6
#> spelling participant rt old20 nletters freq
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 encode 4 470 2.2 6 93
#> 2 encode 46 599 2.2 6 93
#> 3 encode 78 403 2.2 6 93
#> 4 encode 72 975 2.2 6 93
#> 5 encode 32 504 2.2 6 93
#> 6 encode 52 588 2.2 6 93
#> 7 encode 68 418 2.2 6 93
#> 8 encode 10 718 2.2 6 93
#> 9 encode 54 742 2.2 6 93
#> 10 encode 6 776 2.2 6 93
#> # ... with 652 more rows

Here, each rt observation corresponds to a particular participant and a particular word (spelling). There
are 58 distinct words and 78 distinct participants.

For simplicity, let us consider the multilevel linear model whereby average rt varies by both participant
and spelling. This model is as follows.

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = β[si] + γ[wi],

for j ∈ 1 . . . J , βj ∼ N(bs, τ2
s ),

for k ∈ 1 . . .K, γk ∼ N(bw, τ2
w).

We can rewrite βj as βj = bs + ζj , where ζj ∼ N(0, τ2
s ), and rewrite γj as γj = bw + ξk, where ξk ∼ N(0, τ2

w).
This leads to

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = ν + ζ[si] + ξ[wi],

for j ∈ 1 . . . J , βj ∼ N(0, τ2
s ),

for k ∈ 1 . . .K, γk ∼ N(0, τ2
w),

where ν = bs + bw. This is implemented in lmer as follows.

M_blp <- lmer(rt ~ 1 + (1|participant) + (1|spelling),
data = blp_df)

From this, we see the estimate of ν is as follows.

fixef(M_blp)
#> (Intercept)
#> 586.2724

The estimates of τs, τw, and σ are as follows.

VarCorr(M_blp)
#> Groups Name Std.Dev.
#> participant (Intercept) 77.738
#> spelling (Intercept) 64.128
#> Residual 137.229

Group level predictors
In the examples thus far, the predictor variables were at the bottom level, level 0. For example, at level 0, we
had children, and the values of the predictor variable ses were specific to each child. Consider the following
two related data sets, which are based on the MathAchieve and MathAchSchool data sets, respectively,
available in the nlme package:
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mathachschool_df <- read_csv('data/mathachieveschool.csv')
mathach_df <- read_csv('data/mathachieve.csv')

mathach_df
#> # A tibble: 7,185 x 6
#> pupil school minority sex ses mathach
#> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 p1 s1224 No Female -1.53 5.88
#> 2 p2 s1224 No Female -0.588 19.7
#> 3 p3 s1224 No Male -0.528 20.3
#> 4 p4 s1224 No Male -0.668 8.78
#> 5 p5 s1224 No Male -0.158 17.9
#> 6 p6 s1224 No Male 0.022 4.58
#> 7 p7 s1224 No Female -0.618 -2.83
#> 8 p8 s1224 No Male -0.998 0.523
#> 9 p9 s1224 No Female -0.888 1.53
#> 10 p10 s1224 No Male -0.458 21.5
#> # ... with 7,175 more rows
mathachschool_df
#> # A tibble: 160 x 7
#> school size sector pracad disclim himinty meanses
#> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 s1224 842 Public 0.35 1.60 0 -0.428
#> 2 s1288 1855 Public 0.27 0.174 0 0.128
#> 3 s1296 1719 Public 0.32 -0.137 1 -0.42
#> 4 s1308 716 Catholic 0.96 -0.622 0 0.534
#> 5 s1317 455 Catholic 0.95 -1.69 1 0.351
#> 6 s1358 1430 Public 0.25 1.54 0 -0.014
#> 7 s1374 2400 Public 0.5 2.02 0 -0.007
#> 8 s1433 899 Catholic 0.96 -0.321 0 0.718
#> 9 s1436 185 Catholic 1 -1.14 0 0.569
#> 10 s1461 1672 Public 0.78 2.10 0 0.683
#> # ... with 150 more rows

In the mathach_df data, for each pupil in a school, we have variable related to their ethnic minority status,
sex, home socioeconomic background, and their mathematical achieve score (mathach). Thus, in this data set,
we have level 1 grouping variable, school, but all predictors are at level 0. The mathachschool_df data set,
on the other hand, provides us with predictors related to the schools. For example, we have the school’s size,
whether it is public or private, etc., the proportion of students in the school on an academic track (pracad), a
measure of the discrimination climate in the school (disclim), whether there is a high proportion of minority
students (himinty), and the mean socioeconomic status of the school (meanses). In order to use the school
level and pupil level predictors together, we will join these two data frames by school.

mathach_df2 <- left_join(mathach_df,
mathachschool_df,
by = 'school')

Group level predictors present do not special difficulty for linear mixed effects models but can not be treated
identically to individual observation level predictors. For example, just like in similar examples above, we
use a multilevel varying slope and varying intercept model to look at how ses affects mathach scores and
how this effect varies by school. The ses variable is a pupil level variable, and we would be able to treat
other pupil level variable s in a similar way. We would not, however, be able to use group level predictors,
e.g. pracad, disclim, etc., in a similar way. For example, we could not perform the following model.

# does not work
lmer(mathach ~ pracad + (pracad|school), data = mathach_df2)
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This is simply because the effect of pracad on mathach can not vary by school: each school has exactly one
value of pracad.

We still can easily use pracad in a linear mixed effect model, for example as follows.

# does work
# glp: group level predictor
M_glp <- lmer(mathach ~ pracad + (1|school), data = mathach_df2)

In this case, our model is that a pupil’s mathach varies by the school’s pracad, and there is variation across
schools in the terms of the average mathac, with the latter effect being due to the random intercepts term.
In this model, the fixed effects coefficients are as follows.

fixef(M_glp)
#> (Intercept) pracad
#> 8.384325 8.232278

We therefore see that a unit increase in pracad leads to a 8.23 increase in mathach. The random effects are
as follows.

VarCorr(M_glp)
#> Groups Name Std.Dev.
#> school (Intercept) 2.0614
#> Residual 6.2565

From this, we see that the standard deviation in the intercept terms across schools is 2.06.

A more interesting situation involving group level predictors arises in the following situation. Assuming that
our outcome variable is still mathach, we could model how this varies by the pupil’s ses, and how this effect
varies across schools, using a multilevel varying slopes and intercepts model. We could also use a school level
predictor, for example, himinty, and model how the school-level slopes and intercepts for the ses effect vary
by it.

Formally, this model would be as follows.

for i ∈ 1 . . . n yi ∼ N(µi, σ2),
µi = β[si]0 + β[si]1xi,

for j ∈ 1 . . . J ~βj ∼ N(~b0 +~b1zj ,Σ),

where yi is the mathach score and xi is the ses score of pupil i, and zj is the himinty score of school j. As
before, we can rewrite ~βj as follows,

~βj = ~b0 +~b1zj + ~ζj ,[
βj0
βj1

]
=
[
b00
b01

]
+
[
b10
b11

]
zj +

[
ζj0
ζj1

]
,

where
~ζj =

[
ζj0
ζj1

]
∼ N(0,Σ).

From this, we have

for i ∈ 1 . . . n yi ∼ N(µi, σ2),
µi = (b00 + b10z[si] + ζ[si]0) + (b01 + b11z[si] + ζ[si]1)xi,

= b00 + b01xi + b10z[si] + b11z[si]xi︸ ︷︷ ︸
fixed effects

+ ζ[si]0 + ζ[si]1xi︸ ︷︷ ︸
random effects

,

for j ∈ 1 . . . J ~ζj ∼ N(0,Σ),

From this we see that the role of the group level predictor z[si] interacts with the pupil level predictor xi.
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Figure 17: How mathematical achievement varies by a child’s socioeconomic background across a sample of
different school. Schools are colour coded to indicate whether they have high ethnic minority proportions
(lighter colour) or not.

To implement this model in R, we used the joined data set mathach_df2. Note that himinty is coded as
binary variable where a value of 1 means that there is a high proportion of ethic minorities in the school.

# glp: group level predictor
M_glp <- lmer(mathach ~ ses + himinty + ses:himinty + (ses|school),

data = mathach_df2)

The standard deviations of variation in random intercepts and slopes, and their correlation is as follows.

VarCorr(M_glp)
#> Groups Name Std.Dev. Corr
#> school (Intercept) 2.05931
#> ses 0.60327 -0.285
#> Residual 6.06828

The fixed effects coefficients are as follows:

fixef(M_glp)
#> (Intercept) ses himinty ses:himinty
#> 13.1542443 2.5436697 -1.8593332 -0.5760956

From this, we see that the role of himinty changing its value from 0 to 1 decreases the intercept by 1.86 and
decreases the slope of the effect of ses by 0.58.
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Bayesian multilevel models
In practical terms, Bayesian approaches to multilevel modelling differ from their classical counterparts only
by their method of inference. In both cases, we begin by specifying a probabilistic model of the observed data.
For example, if our data was the sleep deprivation and reaction time data from above, regardless of whether a
Bayesian or a classical approach is being taken, a reasonable model of this data would the multilevel varying
slopes and intercepts linear model that we have used already and that can be stated as follows:

for i ∈ 1 . . . n, yi ∼ N(µi, σ2),
µi = b0 + b1xi + ζ[si]0 + ζ[si]1xi,

for j ∈ 1 . . . J , ~ζj ∼ N(0,Σ).

where yi, si, xi are, respectively, the reaction time, subject index, and days of sleep deprivation corresponding
to observation i. In general, how we specify this probabilistic model and the choices available to us are
identical in both the Bayesian and classical approaches. Having specified the model, however, the Bayesian
and classical approaches differ in terms of how they perform the inference of the unknown parameters. As
we have seen in previous chapters, classical approaches infer estimators of these unknowns, for example,
by maximum likelihood estimation, and then consider the sampling distribution of these estimators for
hypothetical true values of the parameters. From this, we obtain p-values for hypothesis tests, null or
otherwise, and confidence intervals, and related concepts. Bayesian approaches, on the other hand, first posit
a prior probability distribution over the unknown parameters. In the above model, for example, we can
parameterize it in terms of 6 unknowns:

b0, b1, σ, τ0, τ1, ρ,

where τ2
0 , τ2

1 are the diagonal elements of Σ, and ρ is its off-diagonal element. Bayesian methods will
therefore posit a probability distribution P(b0, b1, σ, τ0, τ1, ρ) over this six dimensional space. This prior is
then combined, via Bayes’ rule, with the likelihood function over the parameters to result in the posterior
distribution. The posterior distribution tells us the probability that the true values of the parameters are a
particular values, conditional on all the assumptions of the model.

If we accept default settings for priors and other quantities, performing a Bayesian multilevel linear model
using brms::brm is identical to using lme4::lmer. For example, the following implements the Bayesian
counterpart of the lmer based model that we used on Page 15, which clearly differs only by using the command
brm instead of lmer:

M_bayes <- brm(Reaction ~ Days + (Days|Subject),
data = sleepstudy)

The main results of this model may be obtained by summary(M_bayes), or equivalently by just typing the
name of the model M_bayes.

M_bayes
#> Family: gaussian
#> Links: mu = identity; sigma = identity
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: sleepstudy (Number of observations: 180)
#> Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
#> total post-warmup samples = 4000
#>
#> Group-Level Effects:
#> ~Subject (Number of levels: 18)
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> sd(Intercept) 27.04 7.08 15.69 42.04 1.00 1750 2591
#> sd(Days) 6.57 1.49 4.19 9.96 1.00 1701 2055
#> cor(Intercept,Days) 0.08 0.29 -0.48 0.64 1.00 1146 1907
#>
#> Population-Level Effects:
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#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> Intercept 250.95 7.25 236.35 264.98 1.00 1626 2342
#> Days 10.46 1.66 7.24 13.83 1.00 1486 1985
#>
#> Family Specific Parameters:
#> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
#> sigma 25.91 1.58 23.11 29.11 1.00 3568 2920
#>
#> Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
#> and Tail_ESS are effective sample size measures, and Rhat is the potential
#> scale reduction factor on split chains (at convergence, Rhat = 1).

In this output, amongst other information, for each one of the six variables b0, b1, σ, τ0, τ1, ρ, we have the mean
of the posterior distribution (Esimate), the standard deviation of the posterior distribution (Est.Error),
and the upper and lower limits of the 95% high posterior density interval (l-95% CI, u-95% CI).

The prior on M_bayes can be seen as follows:

M_bayes$prior
#> prior class coef group resp dpar nlpar bound
#> 1 b
#> 2 b Days
#> 3 student_t(3, 288.7, 59.3) Intercept
#> 4 lkj_corr_cholesky(1) L
#> 5 L Subject
#> 6 student_t(3, 0, 59.3) sd
#> 7 sd Subject
#> 8 sd Days Subject
#> 9 sd Intercept Subject
#> 10 student_t(3, 0, 59.3) sigma

From this, we see that a improper uniform prior was specified for the fixed effect slope parameter, i.e. b1 in
our formula above. For b0, a non-standard Student t-distribution was used. This is centered at the overall
median of the Reaction variable, and its scale is set to the median absolute deviation from the median (mad).
For the covariance matrix corresponding to Σ, the lkj_corr_cholesky prior with hyperparameter of 1 is
used. When the hyperparameter is set to 1, this effectively puts uniform prior on on the correlation matrix.
For τ0, τ1, and σ a half t-distribution, centered at 0, and with a scale equal to the mad of Reaction is used.
Although it is not stated explicitly that a half t-distribution is used, this is the case because of the nature of
these variable all being defined on the positive real line.

In general, we may use the command brm in place of lmer to produce a Bayesian counterpart of any lme4
based linear mixed effects model, assuming we accept the default priors set by brm. For example,

M_glp_bayes <- brm(mathach ~ ses + himinty + ses:himinty + (ses|school),
data = mathach_df2)

Very often, the results of the models in brm and lmer are very similar in terms of their practical conclusions.
Consider, for example, the posterior means for the fixed effects from the Bayesian model, i.e.,

M_glp_bayes %>%
summary() %>%
extract2('fixed') %>%
extract(,'Estimate')

#> Intercept ses himinty ses:himinty
#> 13.1445391 2.5461065 -1.8431743 -0.5778964

These are very similar to the maximum (restricted) likelihood estimates from lmer:
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M_glp %>% fixef()
#> (Intercept) ses himinty ses:himinty
#> 13.1542443 2.5436697 -1.8593332 -0.5760956

Bayesian multilevel models, however, assuming we are implementing them using a probabilistic programming
language like Stan, on which brms is based, become easier to extend. Exploring how to do goes beyond the
intended scope of this chapter, but we will cover examples of this in Chapter 17.
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