
Chapter 13: Nonlinear Regression

Mark Andrews

Contents
Introduction 1

Parametric nonlinear regression 3
Example 1: A sigmoidal regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Example 2: Modelling golf putting successes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Polynomial regression 9
The nature of polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Polynomial regression in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Polynomial regression using other variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Overfitting in polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Spline and basis function regression 21
Cublic b-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Choosing basis function parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Generalized additive models 29
Using mgcv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References 35

Introduction
In Chapter 10 (Logistic Regression), Chapter 11 (Generalized Linear Models), and Chapter 12 (Multilevel
Models), we saw how the basic or default regression model, which we referred to as the normal linear model,
can be generalized and extended so that it can apply to a much wider range of problems than would otherwise
be the case. In this chapter, we will consider another important generalization of the basic regression model.
In order to introduce this generalization, let us again return to the normal linear model. In the normal linear
model, we assume we have a set of n univariate observations:

y1, y2 . . . yi . . . yn.

Corresponding to each yi, we have a set of K predictor variables ~xi = xi1, xi2 . . . xik . . . xiK . The normal
linear model assumes that each yi is a sample from a normal distribution with a mean µi and a variance
σ2, and the mean µi is a linear function of the predictors xi. We can write that statement more formally as
follows:

yi ∼ N(µi, σ2), µi = β0 +
K∑
k=1

βkxik, for i ∈ 1 . . . n.

In other words, this model assumes that each yi is a sample from a normal distribution whose mean µi is a
(deterministic) linear function of the predictors.
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The assumption of a linear relationship between the mean of the outcome variable and the predictor variables
is a strong one. It means that we are assuming that the average value of the outcome variable will change
as a constant proportion of a change in any predictor variable. For example, if were to change xik by ∆xik ,
we assume that µi will change by exactly βk ×∆xik . We assume that this holds for all predictor variables
and for any value of the change ∆xik . Clearly, this is a restrictive assumption that will not generally hold.
In Figure 1, we show some of the many ways in which this assumption can be violated. In each of these
examples, the average value of the outcome variable does not change by a constant amount with any constant
change in the predictor variable. Clearly, the average trends in each of these scatterplots are not adequately
described by straight lines.
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Figure 1: Examples of nonlinear regression models. In each case, the values of the outcome variables are
sampled from normal distributions whose means are nonlinear functions of the the predictor variable.

We can deal with these situations by no longer modelling the average value of the outcome variable as linear
function of the predictors. For example, we can define a normal nonlinear regression model as follows:

yi ∼ N(µi, σ2), µi = f(xi, θ), for i ∈ 1 . . . n,

where xi is the vector of K predictors as before, f is some (deterministic) nonlinear function of xi, and θ is a
set of parameters of f . More generally, of course, we do not have to assume our outcome variable is normally
distributed. In fact it could be any parameterized probability distribution. Moreover, we do not have to
assume that it is the mean of the outcome distribution that varies as the deterministic function of xi. This
leads to the following more general nonlinear regression model:

yi ∼ D(µi, ψ), µi = f(xi, θ), for i ∈ 1 . . . n,

where D is some probability distribution with parameters µi and ψ, and µi is the nonlinear function of xi,
which is parameterized by θ.

Using a nonlinear regression model, whether the normal or the more general one, introduces considerable
conceptual and practical difficulties. First, we must choose the nonlinear function, or functional form, f .
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There are indescribably many possibilities for f and choosing between them or even choosing a plausible set
of candidate functions can be very challenging, as we will see. Second, inference of the values of the unknown
parameters of the model can also be very challenging. In the normal linear regression model, inference of,
for example, the maximum likelihood estimator, can be accomplished using algebra. Likewise, assuming
appropriate choices of prior distributions for the parameters, the Bayesian posterior distribution over these
parameters can be obtained through algebra. This is generally not the case when we use nonlinear functions,
even if our outcome variable is normally distributed, and for arbitrary nonlinear functions f and arbitrary
probability distributions for the outcome variable D, inference of the values of the unknown parameters
in both f and D may lead to insurmountable computational challenges. Typically, different numerical
algorithms are employed in different situations. Often these work well, but it is not at all uncommon to
encounter computational problems or failures with these algorithms too. Finally, even assuming that inference
was successful, the interpretation of parameters in nonlinear regression models may also be challenging or
even impossible. In a linear model, each regression coefficient has a simple interpretation: it gives the rate
of change of the outcome variable for any unit change of the predictor. In nonlinear models, it is not so
simple. Certainly, in some cases of nonlinear regression, the parameters can have a clear and meaningful
interpretations. But in other cases, individual parameters can not be understood independently of other
parameters. This sometimes entails that it can be difficult to assess whether one predictor variable has any
statistically meaningful relationship (e.g., a statistically significant relationship) with the outcome variable.
More generally, it can be challenging to summarize and explain the relationship, if any, between the predictors
and the outcome variable. Simply put, nonlinear regression models can be opaque, and as such, are sometimes
preferred to be treated just as black box models, used for the accuracy of their predictions rather than for any
conceptual or explanatory insights.

For all of these reasons, nonlinear regression should be treated with some caution and as a relatively advanced
statistical topic. That is emphatically not to say that it should be avoided. It is in general a very powerful
tool that can allow us to do either more advanced analyses than were otherwise possible, or even to be able
to deal with problems that were otherwise impossible. It is just that we should also be clear that nonlinear
regression raises additional conceptual and practical challenges compared to those we have encountered when
using general or generalized linear models.

In this chapter, we’ll discuss four topics related to nonlinear regression. First, we’ll cover parametric nonlinear
regression, which is where a certain parametric form of the nonlinear function is assumed. Next, we will
cover polynomial and splines regression models, both of which can be seen as either semiparametric or
nonparametric regression models. Finally, we will introduce to the topic of generalized additive models (gams),
which is a broad class of nonlinear regression models of which polynomial and splines models can be seen as
subclasses.

Parametric nonlinear regression
In parametric nonlinear regression, we choose a particular parametric functional form for the nonlinear
function f and then infer the values of its unknown parameters from data. The other types of nonlinear
regression that we will cover in this chapter also have parameters, which are inferred from data, and so can
also be termed parametric models. However, in these cases, the functional form of the nonlinear function in
the regression model is essentially unknown and is being approximated by a more flexible nonlinear model.

Example 1: A sigmoidal regression
To begin with this topic, let us start with an essentially arbitrarily chosen nonlinear function, such as the
following nonlinear function of a single variable x, as an example:

f(x, b, α, β) , b tanh(α+ βx).

The tanh (hyperbolic tangent) function is defined as follows:

tanh(x) = ex − e−x

ex + e−x
= e2x − 1
e2x + 1
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It is a sigmoidal or S-shaped function that maps the real line to the interval [−1, 1], see Figure 2a, and so
f(x, b, α, β) is a linear function of a nonlinear function of another linear function of x. Functions of this type
are widely used in artificial neural network models (see Bishop 1995). With this nonlinear function, our
nonlinear regression model would then be

yi ∼ N(µi, σ2), µi = b tanh(α+ βxi), for i ∈ 1 . . . n.

In order to explore this regression model in practice, we will begin by simply generating data according to
the model.

Df <- local({
b <- 3.0
alpha <- 0.75
beta <- 0.25
tibble(x = seq(-10, 10, length.out = 50),

y = b * tanh(alpha + beta*x) + rnorm(length(x), sd = 0.5))
})

This data is shown in Figure 2b.
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Figure 2: a) The tanh, or hyperbolic tangent, function. b) Data normally distributed around a linear function
of a tanh function.

To perform this regression analysis, we can use the nls function that is part of the base R stats package,
which is always preloaded. With nls, in its R formula, we state the parametric form of the function we are
assuming. In our case, this will be y ~ b * tanh(alpha + beta * x). The nls function then attempts to
find the least squares solution for alpha and beta. In other words, and more formally, it attempts to find the
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values of b, α and β that minimize the following formula.
n∑
i=1

(yi − b tanh(α+ βxi))2

Usually, nls requires us to also provide an initial guess of the values of the unknown parameters. In the
following example, we’ll set alpha to 0 and b and beta to 1.

M <- nls(y ~ b * tanh(alpha + beta * x),
start = list(b = 1, alpha = 0, beta = 1),
data = Df)

We can view the results of this analysis using summary just as we did with lm, glm, lmer etc models.

summary(M)
#>
#> Formula: y ~ b * tanh(alpha + beta * x)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> b 2.84163 0.12458 22.809 < 2e-16 ***
#> alpha 0.77170 0.10205 7.562 1.15e-09 ***
#> beta 0.24426 0.02902 8.416 6.14e-11 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.4478 on 47 degrees of freedom
#>
#> Number of iterations to convergence: 9
#> Achieved convergence tolerance: 4.789e-06

As can we see, the least squares estimates of b, α and β, which we’ll label as b̂, α̂ and β̂, are 2.842, 0.772 and
0.244. The estimate for σ, the standard deviation of the normal distribution around each µi, also known as
the residual standard error, has a value of 0.448. All of these values match well the parameters that we used
to generate the data.

We may now view the predictions of the model using the predict function. Recall that by default, predict
will return the predicted values of the outcome variable for each value of the predictor variables using the
estimated values of the parameters. In other words, it will calculate ŷi = b̂ tanh(α̂+ β̂xi) for each xi. We’ll
use the following code to perform this prediction and plot the results, which is shown in Figure 3

Df %>%
mutate(y_pred = predict(M)) %>%
ggplot(aes(x = x)) +
geom_point(aes(y = y), size = 0.5) +
geom_line(aes(y = y_pred), colour = 'red')

One practical issue with nls is that choosing starting values may not always be a simple matter. Even in the
above example, starting values relatively close to the true values, say 0 for all parameters, will lead to the
algorithm failing.

M_tmp <- nls(y ~ b * tanh(alpha + beta * x),
start = list(b = 0, alpha = 0, beta = 0),
data = Df)

#> Error in nlsModel(formula, mf, start, wts): singular gradient matrix at initial parameter estimates

In the case of some functions, however, the stats package provides functions that use heuristics to roughly
estimate some reasonable starting values of parameters. These so-called selfStart functions only exist for a
restricted set of functions. While it is possible to create new selfStart functions for new functions, creating
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Figure 3: The fitted tanh regression model.

the heuristics is itself not simple. For our f(x, b, α, β) function, no selfStart function exists. However, a
selfStart function, SSlogis, does exist for a related function:

SSlogis(x,Asym, xmid, scal) ,
Asym

1 + e
xmid−x

scal

This is also a sigmoidal function, but it is bounded between 0 and a. Because it can not take on negative
values, to use it with our data, we must first subtract the minimum value of all yi values from each yi. Having
done so, we can use the getInitial function to return some plausible starting values for Asym, xmid, and
scal.

inits <- getInitial(y ~ SSlogis(x, Asym, xmid, scal),
data = mutate(Df, y = y - min(y))

)
inits
#> Asym xmid scal
#> 5.850634 -3.055370 2.180384

With some algebra, we can then map the parameters of SSlogis to those of our tanh based function as
follows:

α = Asym
2scal , β = 1

2scal , b = Asym
2

We may now use these starting values in our nls model.

starting_values <- within(list(),{
alpha <- inits['Asym'] / (2 * inits['scal'])
beta <- 1 / (2 * inits['scal'])
b <- inits['Asym']/2

})

nls(y ~ b * tanh(alpha + beta * x),
start = starting_values,
data = Df) %>%

summary()
#>
#> Formula: y ~ b * tanh(alpha + beta * x)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
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#> b 2.84163 0.12458 22.809 < 2e-16 ***
#> beta 0.24426 0.02902 8.416 6.14e-11 ***
#> alpha 0.77170 0.10205 7.562 1.15e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.4478 on 47 degrees of freedom
#>
#> Number of iterations to convergence: 10
#> Achieved convergence tolerance: 3.72e-06

Example 2: Modelling golf putting successes
Thus far, our aim was simply to introduce the basic principles of how to do nonlinear regression using nls,
and for that we used a seemingly arbitrary nonlinear function and some data generated using this model. Let
us now consider some real world data, but also consider how the choice of the nonlinear function can be,
and ideally ought to be, theoretically motivated. The data we will use concerns the relative frequencies with
which professional golfers successfully putt the golf ball into the hole as a function of their distance from the
hole. This data, which is available in the golf_putts.csv file, is taken from Berry (1995), and was discussed
further in Gelman and Nolan (2002).

golf_df <- read_csv('data/golf_putts.csv')
golf_df
#> # A tibble: 19 x 3
#> distance attempts success
#> <dbl> <dbl> <dbl>
#> 1 2 1443 1346
#> 2 3 694 577
#> 3 4 455 337
#> 4 5 353 208
#> 5 6 272 149
#> 6 7 256 136
#> 7 8 240 111
#> 8 9 217 69
#> 9 10 200 67
#> 10 11 237 75
#> 11 12 202 52
#> 12 13 192 46
#> 13 14 174 54
#> 14 15 167 28
#> 15 16 201 27
#> 16 17 195 31
#> 17 18 191 33
#> 18 19 147 20
#> 19 20 152 24

As we can see, this data provides the number of putting attempts and the number of successful putts at
various distances (in feet) from the hole. For example, there were 1443 recorded putting attempts at a
distance of 2 feet from the hole. Of these 1443 attempts, 1346, or around 93%, were successful. On the other
hand, there were 200 recorded attempts at a distance of 10 feet, or which 67, or around 34%, were successful.
The absolute number of attempts and successes at each distance is vital information and so ideally we should
base our analysis on this data, using a binomial logistic regression or a related model. However, for simplicity
here, we will just use the relative frequencies of successes at each distance. To do so, we will first create a
new variable, prob, that is the ratio of successes to attempts at each distance. This is done in the following
code, and the plot of these probabilities as a function of distance is show in Figure 4.
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golf_df %<>% mutate(prob = success/attempts)

0.25

0.50

0.75

5 10 15 20
Distance from the hole (ft)

P
ro

ba
bi

lit
y 

of
 th

e 
go

lf 
ba

ll 
la

nd
in

g 
in

 h
ol

e

Figure 4: The relative frequencies of successful putts by professional golfers as a function of distance (ft)
from the hole.

R

dr

Figure 5: A golf ball of radius r (left) and the golf hole of radius R (right). The centres of these two circles
are d apart. If the golf ball travels in a straight vertical line to the hole, it will fall in. If its trajectory
deviates, either to the right or to the line, greater than an angle of θcrit, it will miss. The angle θcrit is the
angle between the vertical line of length d and the tangent line from the centre of the ball to the hole. The
line from the centre of the hole meets the tangent line at a right angle. As such, θcrit = sin−1 (R

d

)
.

In order to fit a parametric nonlinear regression model to this data, we must begin by choosing the nonlinear
function. We could choose functions whose shape appears to roughly match the decaying pattern of the
points. However, when it is possible, it is preferable to choose a function based on a principled model of the
phenomenon. As an example, let us use the simple model described in Gelman and Nolan (2002). We will
treat the golf ball as a circle of radius r and the hole as the circle of radius R. In reality, the values of r and
R are 21.33mm and 53.975mm, respectively. In Figure 5, we draw these two circles to scale, positioned a
distance of d apart. If the golf ball travels in a straight line along the line from its centre to the centre of the
hole, it will fall into the hole. If it deviates slightly from this straight line, it will still fall in if the angle of
the trajectory to the left or the right is no greater than θcrit = sin−1 (R

d

)
, which is the angle between the

vertical line of length d and the tangent line from the centre of the circle representing the ball to the circle
representing the hole1. We can assume that deviation from a perfect straight line of a professional golfer’s
putt will be normally distributed with a mean of zero and a standard deviation of σ, where the value of σ is
unknown. Given this, the probability that the angle of their putt will be between 0 and θcrit is

P(0 < θ ≤ θcrit) = Φ(θcrit|0, σ2)− 1
2 ,

1The tangent line from the centre of the small circle intersects the line from the centre of the larger circle at a right angle. In
the right angled triangle that is formed, see Figure 5, the side opposite θcrit is length R, and the hypotenuse is of length d. The
sin of θcrit is sin (θcrit) = R

d
, and so θcrit = sin−1

(
R
d

)
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where
Φ(θcrit|0, σ2) ,

∫ θcrit

−∞
N(θ|0, σ2),

which is the value at θcrit of the cumulative distribution function of a normal distribution of mean 0 and
standard deviation σ. We simply double the quantity Φ(θcrit|0, σ2)− 1

2 to get P(θcrit < θ ≤ θcrit). Therefore,
the probability of a successful putt is

2Φ
(
sin−1 (R

d

)
|0, σ2)− 1.

This is a nonlinear parametric function of distance d, where R is known to have a value of 53.975mm, and σ
is the single unknown parameter.

This nonlinear function is easily implemented as follows.

successful_putt_f <- function(d, sigma){
R <- 0.17708333 # 53.975mm in feet
2 * pnorm(asin(R/d), mean=0, sd=abs(sigma)) -1

}

The nls based model using this successful_putt_f function is as follows.

M_putt <- nls(prob ~ successful_putt_f(distance, sigma),
data = golf_df,
start = list(sigma = 0.1)

)
summary(M_putt)
#>
#> Formula: prob ~ successful_putt_f(distance, sigma)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> sigma 0.041427 0.001289 32.15 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.04233 on 18 degrees of freedom
#>
#> Number of iterations to convergence: 4
#> Achieved convergence tolerance: 9.886e-06

As we can see, the estimate for sigma is 0.041. This is the estimated standard deviation in the angle of
errors the golfer’s putts. It is given in radians, and corresponds to 2.374 degrees. The nonlinear function
with this estimated value for σ is plotted in Figure 6. This appears to be a good fit to the data, which is not
necessarily expected given that the physical model that we used was a very simple one.

Polynomial regression
Using nls required that we knew or could propose a specific functional form for the nonlinear function in our
regression model. We saw the case of the golf putting data where, using some basic principles and knowledge
of the domain, we could obtain a specific nonlinear function for our regression model. There are many other
examples like this throughout science where theoretical descriptions of the phenomenon of interest, even if
sometimes simplified ones, can lead to nonlinear functions that we can use in the regression model. When
we are in these situations, nls and related tools are very useful. Often, however, we simply do not have
theoretically motivated nonlinear functions that describe the phenomenon of interest. Certainly, it may be
possible in principle to derive these functions, but this is essentially a type of scientific theory building, and
so is not at all a simple matter, especially where the phenomenon and the related data are complex. In these
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Figure 6: The predictions of the nonlinear regression model based on probabilities of errors in putting angles
being normally distributed.

situations then, we often proceed by using a flexible class of nonlinear regression models that essentially
attempt to approximate the nonlinear function in regression model. These models are sometimes termed
nonparametric nonlinear regression models, although the validity of that term is debatable, and include spline
and radial basis function regression models, generalized additive models, and Gaussian process regression
models. We will cover some of these models in subsequent sections of this chapter. As a bridge to these
topics, we will first cover polynomial regression models.

Polynomial regression models can be seen as just another parametric nonlinear regression model like those we
used with nls in the previous section because we have a specific nonlinear function, namely a polynomial
function of specified degree, that has parameters that we then infer from data. Indeed, it is perfectly possible
to use a polynomial function in nls. However, polynomial functions are often chosen for their apparent ability
to approximate other functions. In other words, in situations where we are modelling data whose trends are
nonlinear but where there no known parametric form to this nonlinear, polynomial regression models are
often the default choice. The reason why they are chosen is because, as we will see, they are particularly easy
to use, being essentially a linear regression on transformed predictor variables. However, we will argue here
that polynomial regression should be used with caution, and perhaps should not be a default choice when
doing nonlinear regression, because they can often lead to poor fit to the data, either by underfitting but
more commonly by overfitting, as we will see.

The nature of polynomial regression
For simplicity, let us begin with a regression model with a single outcome variable and single predictor
variable. As we’ve seen, a normal linear regression model in this case is defined as follows:

yi ∼ N(µi, σ2), µi = α+ βxi, for i ∈ 1 . . . n.

The function µi = α+ βxi is a polynomial of degree one. In other words, we can write

µi = α+ βxi,

= αx0
i + βx1

i ,

where the superscripts in x0
i and x1

i are exponents. In other words, x0
i is xi raised to the power of 0, which is

x0
i = 1, and x1

i is xi raised to the power of 1, which is x1
i = xi. The degree of the polynomial is the highest

power in any of its terms. We can easily extend the linear model to become a polynomial of any degree. For
example, a degree 2 polynomial regression version of the above model could be as follows:

yi ∼ N(µi, σ2), µi = α+ βxi + γx2
i , for i ∈ 1 . . . n.
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We could rewrite this as

yi ∼ N(µi, σ2), µi = αx0
i + βx1

i + γx2
i , for i ∈ 1 . . . n,

or, to avoid proliferation of Greek letters for the coefficients, by

yi ∼ N(µi, σ2), µi = β0x
0
i + β1x

1
i + β2x

2
i , for i ∈ 1 . . . n,

where the subscripts in β0, β1, β2 are simply indices. Continuing like this to any finite degree is easy. For
example, here’s a degree K = 5 polynomial of each xi.

yi ∼ N(µi, σ2), µi = β0x
0
i + β1x

1
i + β2x

2
i + β3x

3
i + β4x

4
i + β5x

5
i ,

µi =
K∑
k=0

βkx
k
i , for i ∈ 1 . . . n.

Viewed this way, a polynomial regression model of single predictor is simply a linear regression model with
multiple predictors, each of which being the predictor raised to a different power.

Raising a given predictor to successive powers from 0, 1 . . . leads to a different function of x. Some examples
are shown in Figure 7. When the power is 0, the function is a flat line at 1 (y = x0 = 1). When the power
is 1, the function is a line with slope 1 (y = x1 = x). When the power is 2, the function is a parabolic, or
quadratic, function, and so on. The polynomial function

∑K
k=0 βkx

k
i is a weighted sum of these functions,

with the weightings of the sum being the coefficients β0, β1 . . . βK . These weighted sums can approximate
different functions. For example, in Figure 8, we provide multiple plots, each with multiple functions of the
form y =

∑5
k=0 βkx

k where β0, β1 . . . β5 are random. In polynomial regression, therefore, we aim to infer
a set of coefficients to essentially approximate the function that represents the curve from which our data
was generated along with additive normally distributed noise. In other words, we assume that are data are
generated as follows:

yi ∼ N(f(xi), σ2), for i = 1, 2 . . . n,

where f is a nonlinear function that we will approximate with a polynomial of degree K, i.e. each xi, we
assume that f(xi) can be approximated by

∑K
k=0 βkx

k
i for some unknown values of β0, β1 . . . βK .
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Figure 7: Plots of polynomial functions. For each degree k ∈ 0, 1, . . . 5, we plot y = xk. We have scaled the
value of y in each case so that it occurs within the range (−2, 2), which is done to aid the visualization of
each function.
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Figure 8: Examples of random polynomial functions. In each subplot, we have five random polynomials of
degree K = 5. In other words, each function shown in each subplot is defined as y =

∑5
k=0 βkx

k for some
random vector β0, β1 . . . β5.

Polynomial regression in practice
Let use polynomial regression to model some eye-tracking data2, which is based on averaging data that
was obtained from a eye-tracking based cognitive psychology experiment, and is available in the file
funct_theme_pts.csv.

eyefix_df <- read_csv('data/funct_theme_pts.csv')

The data provides the number of times over the duration of a few seconds that participants look at certain
key object in their visual scenes under different experimental conditions. To begin, we will look at the average
number of eye fixations at one of the three different types of object in each (50ms) time window, averaging
over experimental subjects and experimental conditions. The fixation proportions for all three object is shown
in Figure 9. We will begin our analysis with just the data on the Target object.

eyefix_df_avg <- eyefix_df %>%
group_by(Time, Object) %>%
summarize(mean_fix = mean(meanFix)) %>%
ungroup()

eyefix_df_avg_targ <- filter(eyefix_df_avg, Object == 'Target')

To perform a polynomial regression in R, we can use lm. All we need to do is to create new variables that are
2Data from D. Mirman and J. Magnussen. See https://github.com/dmirman/gazer for more details.
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Figure 9: Average proportion of eye fixations at different types of objects (named Competitor, Target,
Unrelated) in each time window in multisecond experimental trial.

our original variable raised to different powers. For example, for a predictor variable x and outcome y, a
degree 3 polynomial regression using lm could be written using the following lm formula.

y ~ x + I(x^2) + I(x^3)

Note that we must use I(), known as as is, here. This essentially transforms e.g. xˆ2 to be a new variable in
the regression. We can create the same formula more easily using poly as follows.

y ~ poly(x, degree=3, raw=T)

We will explain the meaning of raw=T in due course, but for now, we will note that by default raw=F.

In the following code, we perform polynomial regression on this data from degree 1 (which is a standard linear
model) to degree 9. Note that we are using purrr::map here to re-run the same lm 9 times. On the first
iteration, the degree parameter in poly takes a value of 1. On the second iteration, it takes the value of 2,
and so on for each value in the sequence 1 to 9. The 9 resulting models are stored in the list M_eyefix_targ.

M_eyefix_targ <- map(seq(9),
~lm(mean_fix ~ poly(Time, degree = ., raw = T),

data = eyefix_df_avg_targ)
)

The fitted models can be seen in Figure 10 and the model fit statistics are show in Table 1. For the model fit
statistics, we provide R2, adjusted R2, the log of the likelihood, and the AIC. We have covered all four of
these statistics in previous chapters. For example, R2 and adjusted R2 have been covered in Chapter 9, and
the log likelihood and AIC have been covered in Chapter 3, and elsewhere. As we can see both in the figures
and from the model summaries, we obtain better fits to the data as we increase the degree of the polynomial.
This may seem to imply that higher order polynomials are more flexible and so generally lead to better fits
to data. This is an important point to which we will return later in this section.

Note that because the polynomial regression is essentially a linear model, everything that we know about
linear models and lm apply to polynomial regression too. For example, the summary output of the model,
which we show below for the case of degree K = 3, is interpreted identically to any other lm model summary.

summary(M_eyefix_targ[[3]])
#>
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Table 1: Model fit statistics for polynomial regression models.

degree Rsq Adj Rsq LL AIC
1 0.57 0.56 44.35 -82.70
2 0.70 0.69 58.72 -109.44
3 0.89 0.89 100.49 -190.99
4 0.90 0.90 103.76 -195.53
5 0.98 0.97 161.26 -308.53
6 0.98 0.98 163.50 -311.01
7 0.99 0.99 202.69 -387.39
8 0.99 0.99 203.22 -386.43
9 0.99 0.99 207.39 -392.78
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Figure 10: The predicted functions in a sequences of polynomial models, from degree 1 to degree 9.
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#> Call:
#> lm(formula = mean_fix ~ poly(Time, degree = ., raw = T), data = eyefix_df_avg_targ)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.140940 -0.053969 0.002774 0.062525 0.105314
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.043e-01 1.421e-02 7.336 1.91e-10 ***
#> poly(Time, degree = ., raw = T)1 2.220e-04 1.512e-05 14.681 < 2e-16 ***
#> poly(Time, degree = ., raw = T)2 1.623e-07 2.016e-08 8.051 8.13e-12 ***
#> poly(Time, degree = ., raw = T)3 -7.497e-11 6.359e-12 -11.790 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.07177 on 77 degrees of freedom
#> Multiple R-squared: 0.8921, Adjusted R-squared: 0.8878
#> F-statistic: 212.1 on 3 and 77 DF, p-value: < 2.2e-16

Thus, for example, the rate of the change of the average value of the outcome variable for a unit change on
Time2 is given by the coefficient for this variable, which is 1.6231344× 10−7.

Orthogonal polynomials
In the polynomials we have just run, we used poly with raw = T. By setting raw = F, which is the default,
we obtain orthogonal polynomials. This means that the predictor variables that represent the various powers
of the predictor Time predictor are uncorrelated with one another. To understand the basics of orthogonal
versus raw polynomials, let us generate a set of K = 5 polynomial functions of both types as follows.

x <- seq(-1, 1, length.out = 100)
y <- poly(x, degree = 5) # orthogonal
y_raw <- poly(x, degree = 5, raw = T) # raw

Now, let us look at the inter-correlation matrix of the 5 orthogonal vectors.

cor(y) %>%
round(digits = 2)

#> 1 2 3 4 5
#> 1 1 0 0 0 0
#> 2 0 1 0 0 0
#> 3 0 0 1 0 0
#> 4 0 0 0 1 0
#> 5 0 0 0 0 1

As we can see, they all have zero correlation with one another. By contrast, the raw polynomials are highly
intercorrelated.

cor(y_raw) %>%
round(digits = 2)

#> 1 2 3 4 5
#> 1 1.00 0.00 0.92 0.00 0.82
#> 2 0.00 1.00 0.00 0.96 0.00
#> 3 0.92 0.00 1.00 0.00 0.98
#> 4 0.00 0.96 0.00 1.00 0.00
#> 5 0.82 0.00 0.98 0.00 1.00

Orthogonal polynomials are also usually rescaled so that each vector has a Euclidean length of exactly 1.0.

15



euclidean <- function(x) sqrt(sum(x^2))
apply(y, 2, euclidean)
#> 1 2 3 4 5
#> 1 1 1 1 1
apply(y_raw, 2, euclidean)
#> 1 2 3 4 5
#> 5.831529 4.562178 3.893977 3.467986 3.167594

We provide a plot of orthogonal polynomials from degree 1 to degree 5 in Figure 11.
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Figure 11: Plots of orthogonal polynomial functions of x ∈ (−1, 1) for degree 1 to 5.

Using orthogonal polynomials has computational and conceptual consequences. Computationally, it avoids
any multicollinearity. Multicollinearity arises when any predictor variables can be predicted by some or all of
the other predictors. In practice, there is almost always some multicollinearity because predictors in real
world data sets are often correlated, at least to a minimal extent. Extreme multicollinearity can lead to
numerical instability in the inference algorithms. But more generally, multicollinearity leads to the variance
of the estimates of the coefficients (i.e., the square of the standard error of the estimate) being inflated.
Conceptually, on the other hand, orthogonal predictor variables entail that the coefficient for each predictor is
the same regardless of which of the other predictors are present, or indeed whether any of the other predictor
are present. In other words, the coefficient for the predictor corresponding to Time raised to the kth power
will be the same in every regression that includes this term or if it were used as the only predictor. The
coefficient for each predictor in the orthogonal polynomial regression gives the independent contribution of
the various powers of the original predictor.s

In the following, we rerun the above analysis using orthogonal predictors.

M_eyefix_targ_orth <- map(seq(9),
~lm(mean_fix ~ poly(Time, degree = .),

data = eyefix_df_avg_targ)
)

Let us look, for example, at the coefficients in the first models from degree 1 to degree 4.

map(M_eyefix_targ_orth[1:4],
~coef(.) %>% unname())

#> [[1]]
#> [1] 0.3280476 1.4449036
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#>
#> [[2]]
#> [1] 0.3280476 1.4449036 -0.6884575
#>
#> [[3]]
#> [1] 0.3280476 1.4449036 -0.6884575 -0.8461469
#>
#> [[4]]
#> [1] 0.3280476 1.4449036 -0.6884575 -0.8461469 -0.1753745

As we can see, the coefficient corresponding to any given particular power is the same in each model.
Moreover, because the orthogonal polynomials are all normalized, they are on the same scale. As such, from
the coefficient alone we can immediately see the effect size of each power of the original predictor.

It is important to remember, however, that the orthogonal predictors are no longer simply x0, x1, x2, . . . xK .
They are based on a (relatively complex) transformation of this K + 1 dimensional vector space in a manner
comparable to what is done in principal components analysis. In addition, it should also be noted that
orthogonal polynomials of any given degree will still lead to an identical model fit to that obtained using the
raw polynomials. Overall then, the choice of orthogonal polynomials is motivated by the potential advantages
in their interpretation, and also for the numerical properties.

Polynomial regression using other variables
Because we are using poly inside lm effectively to create a new set of predictors, how we use and interpret
the model results in a polynomial regression are no different to how they are when using lm generally. For
example, in the following, see analyse how the average value of mean_fix varies as polynomial function of
time for each of the three different object categories, rather than just the Target category.

M_eyefix <- lm(mean_fix ~ poly(Time, 9)*Object, data=eyefix_df_avg)

We show the model fit for this in Figure 12.
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Figure 12: The predicted functions for proportion of looking times to each category using a 9 degree
polynomial. In this case, we use the categorical predictor Object to vary to coefficients for the polynomial
regression for the three object categories.

In this model, the Object variable is a categorical variable and so we are creating a different polynomial
function for each Object category (Target, Competitor, Unrelated) by inferring polynomial coefficients
for the base category (which is, by default, Competitor, based on the alphabetical order of the category
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names) and then differences in these coefficients corresponding to the Target and Unrelated categories. For
example, in the following, we show the difference in the quadratic term, i.e. representing Time raised to the
power of 2, between the Competitor and the Target category.

coef(M_eyefix) %>%
extract('poly(Time, 9)2:ObjectTarget')

#> poly(Time, 9)2:ObjectTarget
#> -0.6477649

This tells us that that coefficient changes by a value of approximately -0.648 from the from the Competitor
to the Target category.

Although this analysis was as easy to perform as a varying slopes and varying intercept linear model, the
interpretation of the model is more challenging. We can easily compare the M_eyefix model against a null
alternative model, where Object is used as an intercept only term.

M_eyefix_null <- lm(mean_fix ~ Object + poly(Time, 9), data=eyefix_df_avg)
anova(M_eyefix_null, M_eyefix)
#> Analysis of Variance Table
#>
#> Model 1: mean_fix ~ Object + poly(Time, 9)
#> Model 2: mean_fix ~ poly(Time, 9) * Object
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 231 3.3021
#> 2 213 0.0470 18 3.2551 819.82 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This shows that the polynomial functions for the Target, Competitor, and Unrelated Object categories
do not differ simply in terms of their intercept terms. However, beyond that, it is not simple matter to say
where and how the three different polynomial functions differ from one another, and so it is not a simple
matter to explain the effect of Object on the time course of the eye fixation proportions in this experiment.
This is common issue with nonlinear regression models that we mentioned in the introduction to this chapter.
Ultimately, the polynomial regression model, as with nonlinear regression more generally, provides us with a
relatively complex probabilistic model of the phenomenon we are studying. However, key features of interest,
such as the role played by one predictor variable, can not be isolated as easily to role of individual parameters.

Overfitting in polynomial regression
Let us consider the following simple data set, which is also plotted in Figure 13.

set.seed(101)
Df <- tibble(x = seq(-2, 2, length.out = 20),

y = 0.5 + 1.5 * x + rnorm(length(x))
)

Although we know, because we have generated it, that this data is nothing more than data from a linear
normal model, if this were real world data, we simply would not know this. We could therefore see how well
each in a sequence of increasingly complex polynomial regression models fits this data. These fits are shown
Figure 14, where we also show the R2 value for each polynomial.

As the degree of the polynomial model increases, so too does its fit to the data. However, this fit to the data
is essentially an overfit. There is no precise general definition of overfitting, but in this example, it is clearly
the case that the overfitted model is fitting the noise rather than the true underlying function, which we know
in this case is just a linear model. We can see how the functions in higher order polynomials are bending to
fit individual data points. Overfitted models do not generalize well to new data. This is easy to observe in
this example. We generate a new set of observations from the same true model that was used to generate the
original data, and then see how well this new data is predicted by each of the 9 previously fitted models. We
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Figure 13: Data generated by a simple linear model, with intercept 0.5, slope 1.5, and noise standard deviation
σ = 1.
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Figure 14: Fitting a data with a sequence of polynomials from degree 1 to degree 9. Shown in the label for
each model is its R2 value. Clearly, the fit to the data is increasing but at a cost of overfitting.
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can measure the model predicts the new data sets by calculating R2
new scores for each new data set as follows:

R2
new = 1− RSSnew

TSSnew
= 1−

∑n
i=1(ynew

i − ŷnew
i )2∑n

i=1(ynew
i − ȳnew)2 ,

where ynew
1 . . . ynew

n are the outcome variable values in the new data set, ȳnew is the mean of these values, and
ŷnew

1 . . . ŷnew
n are the predicted values of the outcome variable for the model. Obviously, the lower the value

of R2
new, the worse the model generalization performance. We will generate 1000 new data sets from the

same data generating process as the original model, and for each data set calculated R2
new for each of the 9

polynomial models. The boxplot of the distribution of the R2
new scores for each polynomial model are shown

in Figure 15. Clearly, as the degree of the polynomial increases, its out-of-sample generalization performance
decreases.

It should be noted that, as we discussed in Chapter 8, model evaluation methods such as aic are explicitly
designed to measure out-of-sample generalization and hence help us to identify overfitted models. We may
calculate the aic value for each of the model above as follows.

map_dbl(M_overfits, AIC) %>%
set_names(paste0('degree_', seq(M_overfits))) %>%
round(2)

#> degree_1 degree_2 degree_3 degree_4 degree_5 degree_6 degree_7 degree_8
#> 51.40 48.41 50.40 51.73 51.79 53.49 55.31 56.51
#> degree_9
#> 56.25

As we can see, although the aic model is lower for polynomials of degree 2 and 3 than for degree 1, the drop
is not by much and after that, as the degree of the polynomial increases, so too does the aic value.
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Figure 15: For each polynomial model, we show the boxplot of the distribution of R2 scores of the predictions
of new data sets generated from the same true data generating process as the original data, which was a
normal linear model. The lower the value, the poorer the out of sample generalization of the model. As such,
the more complex the polynomial model, the worse its generalization performance despite the fact that the
more complex models fit the original data better.

Overfitting is a general problem in statistical modelling. However, polynomial regression is especially prone
to overfitting. This is because higher order polynomials are too unconstrained. The higher the order of the
polynomial, the more it can twist and bend to fit the data. This is not always avoided by simply sticking to
lower order polynomials because lower order polynomials underfit the data, having insufficient flexibility to
fit the function. Thus a common problem with polynomial regression is that the lower order polynomials are
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not flexible enough, and the higher order ones are too unconstrained. Moreover, polynomial regression is
also prone to a pathology related Runge’s phenomenon, which is where there is excessive oscillation in the
polynomial function particularly at its edges. We can see this easily by increasing the order of the polynomial
to 16. This model is shown in Figure 16.
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Figure 16: In higher order polynomials, there is often excessive oscillation between fitted points, particularly
at the edge of the function. Here, we plot a 16th order polynomial. At edges of the function, we extreme
oscilliation between the fitted points.

Spline and basis function regression
Polynomial regression can be seen as a type of basis function regression. In basis function regression, we
model the nonlinear functions of the predictors variables using linear combinations of simpler functions that
are known as the basis functions. For example, in the case of a nonlinear regression with one predictor
variable, and assuming normally distributed outcome variables, we would write our basis function regression
model as follows:

yi ∼ N(µi, σ2), µi = f(xi) =
K∑
k=1

βkφk(xi), for i ∈ 1 . . . n,

or if we include an explicit intercept term

µi = f(xi) = β0 +
K∑
k=1

βkφk(xi), for i ∈ 1 . . . n.

Here, φ1(xi), φ2(xi) . . . φk(xi) . . . φK(xi) are (usually) simple deterministic functions of xi. In polynomial
regression, our basis functions are defined as follows:

φk(xi) , xki .

We saw in Figure 8 what weighted sums of these functions look like.

Cublic b-splines
Using basis functions for nonlinear regression is widely practised. There are many different types of basis
functions that are possible to use, but one particularly widely used class of basis functions are spline functions.
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The term spline is widely used in mathematics, engineering, and computer science and may refer to many
different types of related functions, but in the present context, we are defining splines as piecewise polynomial
functions that are designed in such a way that each piece or segment of the function joins to the next one
without a discontinuity. As such, splines are smooth functions composed of multiple pieces, each of which is a
polynomial. Even in the context of basis function regression, there are many types of spline functions that
can be used, but one of the most commonly used types is cubic b-splines. The b refers to basis and the cubic
is the order of the polynomials that make up the pieces. Each cubic b-spline basis function is defined by 4
curve segments that join together smoothly. The breakpoints between the intervals on which these curves are
defined are known as knots. If these knots are equally spaced apart, then we say that the spline is uniform.
For basis function k, its knots can be stated as

tk0 < tk1 < tk2 < tk3 < tk4 ,

so that the curve segments are defined on the intervals (tk0 , tk1 ], (tk1 , tk2 ], (tk2 , tk3 ], (t30, tk4). Spline basis function
k takes the value of 0 for values less than tk0 or values greater than tk4 . The cubic b-spline is then defined as
follows:

φk(xi) =



1
6u

3, if xi ∈ (tk0 , tk1 ], with u = (xi − tk0)/(tk1 − tk0)
1
6 (1 + 3u+ 3u2 − 3u3), if xi ∈ (tk1 , tk2 ], with u = (xi − tk1)/(tk2 − tk1)
1
6 (4− 6u2 + 3u3), if xi ∈ (tk2 , tk3 ], with u = (xi − tk2)/(tk3 − tk2)
1
6 (1− 3u+ 3u2 − u3), if xi ∈ (tk3 , tk4), with u = (xi − tk3)/(tk4 − tk3)
0 if xi < tk0 or xi > tk4

In Figure 17, we plot a single cubic b-spline basis function defined on the knots {− 1
2 ,−

1
4 , 0,

1
4 ,

1
2}. In this

figure, we have colour coded the curve segments.
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Figure 17: A single cubic b-spline basis function defined on the knots {− 1
2 ,−

1
4 , 0,

1
4 ,

1
2}.

In any basis function regression, including spline regression, we usually have many basis functions. In the case
of spline regression, the number and location of the basis functions are defined by the position of the knots.
In the case of any one basis function, as we’ve seen, only five knots are used. However, if there are many
more knots, a basis function is defined on each set of 5 consecutive knots. In other words, if our knots are
t0, t1, t2 . . . tK , one basis function is defined on knots t0, t1, t2, t3, t4, the next is defined on knots t1, t2, t3, t4, t5,
and so on. In Figure 18a, we provide examples of multiple basis functions defined on different consecutive
sequences of a set of knots spaced 1

2 apart, from -2 to 2. In practice, sometimes lower order spline are fitted
to the sequences of less 5 knots at the start and end of the set of knots, e.g., the sequences t0, t1, t3, etc. The
function bs available from the splines package creates b-spline basis functions in this way. In Figure 18b,
we provide the basis functions created by splines::bs for the same set of knots as were used in 18a.

The simplest way to perform spline regression in R is to use splines::bs, or a related function from the
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Figure 18: a) A set of cubic b-spline basis functions defined on each consective set of 5 knots, spaced 1
2 apart,

from -2 to 2. b) The set of cubic b-spline basis functions defined on the set same knots as in a) generated by
splines::bs function, which includes lower order b-splines at the edges of the set of knots.

splines package, just as we used poly for polynomial regression. For example, to perform a cubic b-spline
regression on our eye-fixation rates to the three object categories, we could do the following.

library(splines)
knots <- seq(-500, 2500, by = 500)
M_bs <- lm(mean_fix ~ bs(Time, knots = knots)*Object,

data=eyefix_df_avg)

The model fit for this model is shown in Figure 20. Notice that we spaced the knots evenly from -500 to
2500 in steps of 500 ms. This gives us 7 explicitly supplied knots, at which there will be a basis function. In
addition, however, the bs function provides 3 (assuming degree=3, which is the default) extra lower degree
basis functions at the boundaries. From the model summary, we can see that we have an extremely high
model fit, R2 = 0.994. As before, the very high R2 value must be treated with some initial caution, as it may
indicate model overfit, a point to which we will return momentarily.

An alternative approach to using bs with lm to perform b-spline regression is to not explicitly choose the
location of the knots, but rather to let bs choose them at evenly spaced quantiles. We can accomplish this
using the df parameter. If we set df to some K, then bs will find K − 3 knots. For example, the following
code will perform a spline regression very similar to M_bs, and with the same number of basis function, but
with the knot locations chosen based on quantiles.

M_bs_df10 <- lm(mean_fix ~ bs(Time, df = 10)*Object,
data=eyefix_df_avg)
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Figure 19: Examples of random sums of cubic b-splines basis functions. In each subplot, we have five random
functions generated by different weightings of the same set of basis functions, which were defined on knots
spaced 1

2 apart, from -2 to 2. .
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Figure 20: The fit of a cubic b-spline, with evenly spaced basis functions every 500ms, to the average eye
fixation rates to each Object category.
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We can see the location of the df - 3 knots by extracting the knots attribute from the object created by bs
as follows.

with(eyefix_df_avg,
attr(bs(Time, df = 10), 'knots')

)
#> 12.5% 25% 37.5% 50% 62.5% 75% 87.5%
#> -500 0 500 1000 1500 2000 2500

In this case, the knots happen to be in the same location as when explicitly made them.

Radial basis functions
An alternative, though related, class of basis functions to spline basis functions are radial basis functions
(rbf). In these basis functions, the value the function takes is defined by the distance of the input value
from a fixed center. As an example, one of the most commonly used rbf models is the Gaussian or squared
exponential rbf defined as follows.

φ(x) = e−
|x−µ|2

2σ2 .

An example of Gaussian rbf, with µ = 0 and σ = 1, is shown in Figure 21.
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Figure 21: A Gaussian radial basis function (rbf) is essentially an unnormalized Normal distribution. In
this figure, we display a Gaussian rbf that is centered at µ = 0 and has a width parameter σ = 1.0. This is
identical to an unnormalized Normal distribution with a mean of 0 and standard deviation of 1.0.

These functions are identical to unnormalized Normal distributions where the two parameters of the rbf
play the same role as the mean and the standard deviation of the Normal distribution. In Figure 22, we
display random sums of 9 rbf functions defined at defined the centres -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2. In
subfigures a-d in 22, we set the σ parameter of the rbfs to 0.25, 0.5, 1.0, 2.0, respectively. As is clear from
these subfigures, as the σ parameter increases, the resulting functions become smoother.

We can perform a rbf regression using lm similarly to how we used lm with poly or splines:bs. To do
so, we will create a custom rbf function that returns the values of set of Gaussian rbf functions defined at
specified centres and with a common width parameter.

rbf <- function(x, centres, sigma = 1.0){
map(centres,

~exp(-(x-.)^2/(2*sigma^2))
) %>% do.call(cbind, .)

}
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Figure 22: Examples of random sums of Gaussian rbfs. In each subplot, we have five random functions
generated by different weightings of the same set of rbfs, which were defined on centres spaced 1

2 apart,
from -2 to 2. The width parameter σ of the rbfs, on the other hand, take the values of 0.25, 0.5, 0.75, 1.0 in
subfigures a-d, respectively. Clearly, as σ increases, the resulting functions become more smooth.

We may then use this rbf function inside lm by choosing the location of the centres, which we set to be at
every 250ms between -1000 and 3000 ms, and the width parameter, which we set to be 500. We will use the
eyefix_df_avg data set as before.

centres <- seq(-1000, 3000, by = 250)
M <-lm(mean_fix ~ rbf(Time, centres = centres, sigma = 500)*Object,

data=eyefix_df_avg)

The predictions of this model are shown in Figure 23.

Choosing basis function parameters
A persistent and major issue in basis function regression is choosing between or evaluating the different
parameters of the basis functions. In the case of cubic b-splines, for example, this would primarily concern the
choice of the number and location of the knots. Other basis functions, as we will see, have other parameters
whose values must also be chosen. Although this issue can in principle be treated as just another type of
parametric inference, i.e., where the basis function parameters are inferred along with the standard regression
coefficients and the standard deviation of the outcome variable, doing so can often be technically very difficult.
As a result, more commonly, this issue is treated as a model evaluation issue. In other words, evaluating
or choosing between the number and location of knots in a spline regression can be seen as analogous, for
example, to choosing between different parametric functions performing parametric nonlinear regression using
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Figure 23: The fit of a Gaussian rbf, with centres at every 250ms and σ = 500, to the average eye fixation
rates to each Object category.

nls. To do so, we typically employ a wide range of model evaluation methods including model fit statistics
to guide our choices. Efficient methods for making these choices, as well as making other modelling choices
with basis function regression, will be discussed in the next section on generalized additive models. However,
for now, we will begin looking at this issue using some relatively simple general methods. For example, we
evaluate choices concerning knots in spline regression by using the aic values for each model in a sequence of
spline models with increasing numbers of basis functions. Rather than using the standard aic, however, we
will use aicc defined as follows:

aicc = aic + 2k(k + 1)
n− k − 1 .

This can be implemented as follows:

aic_c <- function(model){
K <- length(coef(model))
N <- nrow(model$model)
AIC(model) + (2*K*(K+1))/(N-K-1)

}

This correction is generally advised when the ratio of sample size n to number of parameters k is relatively
low, as it would be in the case.

Here, we will consider a new data set GSSvocab, available from GSSvocab.csv, that provides scores on a
vocabulary test for a relatively large number of people, collected over the course of a few decades. For
simplicity, we will examine how vocabulary test scores vary with age, excluding the other variables in the
data set. For this, we obtain the average vocabulary score for each year of age for a sequence of years from 18
to 89.

GSSvocab <- read_csv('data/GSSvocab.csv')
gssvocab <- GSSvocab %>%
group_by(age) %>%
summarize(vocab = mean(vocab, na.rm=T)) %>%
ungroup() %>%
drop_na()

This data is shown in Figure 24.

Let us now fit a sequence of cubic b-spline regression model to this data, where we vary the number of knots
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Figure 24: Average score on a vocabulary test for each year of age in a sequences of years from 18 to 89.

from a minimum of 3 to 30. This is done in the following code where we use so-called natural cubic b-splines,
using the splines::ns function. Cubic b-splines of this kind forces the constraint that the function is linear
beyond the knot boundaries.

df_seq <- seq(3, 30) %>%
set_names(.,.)

M_gssvocab <- map(df_seq,
~lm(vocab ~ ns(age, df = .),

data = gssvocab)
)

aic_results <- map_dbl(M_gssvocab, aic_c)%>%
enframe(name = 'df',

value = 'aic')

For comparison with the aicc result, we will also perform a leave-one-out cross-validation (loocv). As
discussed in Chapter 8 and elsewhere, this is where we remove one observation from the data, fit the model
on the remaining data, and then see how well we can predict the outcome variable’s value in the held-out
data. In a data set with n observations, we leave each observation out and so it requires n repetitions of the
model fitting process.

loocv <- function(K){
map_dbl(seq(nrow(gssvocab)),

function(i){
Df_train <- gssvocab %>% slice(-i)
Df_test <- gssvocab %>% slice(i)
M <- lm(vocab ~ ns(age, df = K), data = Df_train)
Df_test %>%
add_predictions(M) %>%
summarize(rss = (vocab - pred)^2) %>%
unlist()

}
) %>% sum()
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}

loocv_results <- map_dbl(df_seq, loocv) %>%
enframe(name = 'df',

value = 'loocv')

The minimum aicc score is -38.35, which occurs at a df of 6. The minimum loocv score is 2.38, which
occurs at a df of 6.

In Figure 25a, we show the difference between the aicc scores at all df values and the minimum aicc score,
and in Figure 25b, we how the differences between the loocv scores at all df values and the minimum
loocv score. As we can see, the best models have a low number of knots. High values of df tend to become
extremely poor.
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Figure 25: Differences in a) aicc scores and b) loocv scores between each model and the best fitting model.

Generalized additive models
The polynomial and spline regression models that we have covered in the previous two sections can be
regarded as special cases of a more general type of regression model known as a generalized additive model
(gam). gams are quite a general class of regression models, incorporating many special cases, and because
of this, a single formal definition, while technically possible, may not be particularly clear. It is better,
therefore, to define gams by a series of different definitions. We may begin our definition of gams as follows.
Given n observations of a set of L predictor variables x1, x2 . . . xl . . . xL and outcome variable y, where
yi, x1i, x2i . . . xli . . . xLi are the values of the outcome and predictors on observation i, then a gam regression

29



6 10 15

3 4 5

20 40 60 80 20 40 60 80 20 40 60 80

5.0

5.5

6.0

6.5

5.0

5.5

6.0

6.5

age

vo
ca

b

Figure 26: Cubic b-spline regression models of varying df values fitted to the vocabulary test data. The
model with the df of 6 has the lowest aicc and loocv score, but model 5 has a practically indistinguishable
aicc or loocv score.

model of this data is:

yi ∼ D(µi, ψ), µi = f1(x1i) + f2(x2i) + . . .+ fL(xLi), for i ∈ 1 . . . n,

where D is some probability distribution with parameters ψ, and each predictor variable fl is a smooth
function of the predictor variable’s values. Usually each smooth function fl is a weighted sum of basis
functions such as spline basis functions or other common types, some of which we describe below. In other
words, the smooth function fl might be defined as follows:

fl(xli) = βl0 +
K∑
k=1

βlkφlk(xli),

where φlk is a basis function of xli. Although this definition is quite general in its scope, we can in fact be
more general. For example, instead of the outcome variable being described by a probability distribution D
where the value of µi is the sum of smooth functions of the values of predictor variable at observation i, just
as in the case of generalized linear models, we could transform µi by a deterministic link function g as follows:

yi ∼ D(g(µi), ψ), µi = f1(x1i) + f2(x2i) + . . .+ fL(xLi), for i ∈ 1 . . . n.

More generally still, each smooth function may in fact be a multivariate function, i.e. a function of multiple
predictor variables. Thus, for example, a more general gam than above might be as follows:

yi ∼ D(g(µi)), µi = f1(x1i) + f2(x2i, x3i, x4i) + . . .+ fL(xLi), for i ∈ 1 . . . n,
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where in this case, f2 is a 3-dimensional smooth function. From these definitions so far, we can view gams
as extensions of the general and generalized linear models that are based on sums of smooth functions of
predictors. However, multilevel gams are also possible. Recall that an example of a simple multilevel normal
linear model can be defined as follows:

yji ∼ N(µji, σ2), µj = αj + βjxji, for i ∈ 1 . . . n
with αj ∼ N(a, τ2

α), βj ∼ N(b, τ2
β) for j ∈ 1 . . . J .

This model can be rewritten as

yji ∼ N(µji, σ2),
µji = a+ νj + bxji + ξjxji, for i ∈ 1 . . . n, j ∈ 1 . . . J ,

with νj ∼ N(0, τ2
α), ξj ∼ N(0, τ2

β), for j ∈ 1 . . . J .

A gam version of this model might be as follows.

yji ∼ N(µji, σ2),
µji = a+ νj + f1(xji) + f2j(xji), for i ∈ 1 . . . n, j ∈ 1 . . . J ,

with νj ∼ N(0, τ2
α), f2j ∼ F (Ω), for j ∈ 1 . . . J .

Here, f21, f22 . . . f2j . . . f2J are random smooth functions, sampled from some function space F (Ω), where Ω
specifies the parameters of that function space.

Using mgcv

The R package mgcv (Wood 2019, 2017) is a powerful and versatile toolbox for using gams in R. Here, we will
introduce some of the main features of mgcv. We will use a classic data-set often used to illustrate nonlinear
regression, namely the mycle data set, available in the MASS package and elsewhere. This data set gives head
acceleration measurements over time in a simulation of a motorcycle crash.

We illustrate this data set in Figure 27.
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Figure 27: Head acceleration over time in a simulated motorcycle crash.

The main function we will use from mgcv is gam. By default, gam behaves just like lm. In other words, to do
a normal linear regression on the mcycle data, we could use gam as follows.

library(mgcv)

M_0 <- gam(accel ~ times, data = mcycle)
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In other to use gam to do basis function regression, we must apply what mgcv calls smooth terms. There are
many smooth terms to choose from in mgcv and there are many methods to specify them. Here, we will use
the function simply named s to set up the basis functions. The default basis functions used with s are thin
plate splines. These are a type of radial basis functions, not identical but similar to those we describe above.
Therefore, to do thin plate spline basis function regression using gam, we simply apply s to our predictor as
follows.

M_1 <- gam(accel ~ s(times), data = mcycle)

The plot of the fit of this model can be accomplished using the base R plot function. This plot in shown in
Figure 28.
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Figure 28: A thin plate spline basis function regression model applied to the mycle data set.

The model summary output, using the generic summary function, gives us some different output to what we
normally get from linear or generalized linear models, even when we use basis functions. In particular, it
provides us the following table for the basis functions

summary(M_1)$s.table
#> edf Ref.df F p-value
#> s(times) 8.693314 8.971642 53.51503 2.957613e-71

The edf is the effective degrees of freedom of the smooth term. We can interpret its values in terms of
polynomial terms. In other words, a edf close to one means the smooth terms is effectively a linear function,
while a edf close to 2 or close to 3, and so on, are effectively quadratic, cubic, and so on, models. The F
statistic and p-value that accompanies this value tells us whether the function is significantly different to a
horizontal line, which is a linear function with a zero slope. Even if the edf is greater than 1, the p-value
may be not significant because there is too much uncertainty in the nature of the smooth function.

The number of basis functions used by s is reported by the rank attribute of the model. In our model, we
see that it is 10.

M_1$rank
#> [1] 10

In general, mgcv will use a number of different methods and constraints, which differ depending on the details
of the model, in order to optimise the value of k. We can always, however, explicitly control the number of
basis functions used by setting the value of k in the s function. For example, in the following, we set the
value of k to be 5.

M_2 <- gam(accel ~ s(times, k = 5), data = mcycle)
M_2$rank
#> [1] 5
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How models with different numbers of bases differ in terms of AIC can be easily determined using the AIC
function. To illustrate this, we will fit the same model with a range of value of k from 3 to 30.

M_k_seq <- map(seq(3, 20),
~gam(accel ~ s(times, k = .), data = mcycle))

model_aic <- map_dbl(M_k_seq, AIC)
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Figure 29: The AIC values of gam models of the mcycle data with different values of k from 3 to 20 within
the exttts function.

We plot these AIC values in the following Figure 29. As we can see, the aic values drop to a minimum at 9,
and then slowly increases after this minimum over the remaining values of k we have examined.

In addition to explicitly setting the number of basis functions, we can also explicitly set the smoothing penalty
with the sp parameter used inside the s function. In general, the higher the smoothing penalty, the less
flexibility in the nonlinear function. For example, very high values of the smoothing penalty effectively force
the model to be a liner model. On the other hand, low values of the smoothing penalty may be overly flexible
and overfit the data, as we saw above. In Figure 30, we display the model fits of gam models applied to
mcycle data for three different values of sp.

From the Figure, it is clear that values of sp greater than 1 tend to underfit the data. Therefore, it seems
likely that much lower values of sp will be optimal in terms of aic. In the following, we evaluate the aic of a
set of models whose sp ranges from 10−5 to 1 in powers of 10.

sp_seq <- 10^seq(-5, 0)
M_sp_seq <- map(sp_seq,

~gam(accel ~ s(times, sp = .), data = mcycle)
)
model_sp_aic <- map_dbl(M_sp_seq, AIC) %>%
set_names(sp_seq)

We may then subtract the minimum value of aic to see the difference in aic from each model to the optimal
model.

model_sp_aic - min(model_sp_aic)
#> 1e-05 1e-04 0.001 0.01 0.1 1
#> 0.1529868 0.0656411 0.0000000 18.3651318 89.8999526 146.1496912

As we can see, the optimal model is at 0.001, with the aic values for the lower orders of magnitude being
very close, but a rapidly increasing aic value for higher orders of magnitude.

As with k, if sp is not explicitly set, mgcv uses a different methods, including cross-validation, to optimise
the value of sp for any given model. For example, for models M_1 and M_2 above, we can see that their sp
values are as follows.
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Figure 30: Plots of the fits of gam models to the mcycle data with different values of sp from, left to right
and upper to lower, 10−1, 1, 10, 100.

c(M_1$sp, M_2$sp)
#> s(times) s(times)
#> 0.0006195886 0.0213462068

These optimized sp values are close to the sp value we estimated using AIC above.
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