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Introduction
In practice, the term structural equation modelling (sem) refers to a collection of related multivariate statistical
techniques. These include factor analysis, path analysis, latent variable modelling, causal modelling, and
combinations thereof. There is no one definitive definition of sem. However, as we will see with examples, all
sem models, certainly of the traditional kind, can be described by systems of linear regression models that
usually, but not necessarily, involve latent, or unobserved, variables. In addition, these systems of regression
models may, and from some perspectives always ought to (see Pearl 2012), represent causal hypotheses about
the variables being modelled.

Some sem models aim to discover a set of underlying unobserved variables that explain a set of intercorrelated
observed variables. The classic example of this type of analysis is known as factor analysis. The seminal work
on factor analysis, albeit more focused on psychometric theory rather statistics or mathematics is said to be
Spearman (1904). Other sem methods include the classic path analysis work of Sewell Wright (see, Wright
1921, 1934). In this, causal relationships between a set of observed variables are represented using systems of
linear regression models, and the magnitude of direct and indirect causal effects between are then estimated.
More recent major developments in sem primarily include the introduction of the proprietary LISREL (linear
structural relations) software (Joreskog and Van Thillo 1972) and the accompanying standardization of the
sem model specification. In the LISREL model, there are observed outcome variables assumed to be functions
of latent variables, as in factor analysis, and in addition, there are systems of the regression models, as in
path analysis, between the latent variables and other observed variables.

In this chapter, we will cover classical factor analysis, a special case of path analysis known as mediation
analysis, and then the more general classic sem model that includes elements of both factor analysis and
path analysis. In this coverage, we will primarily use the lavaan R package.
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Factor analysis
As a motivating example for introducing factor analysis, let us consider the following data set that is a subset
of the sat.act data set in the psych package.

sat_act <- read_csv('data/sat_act.csv')

Corr:

0.561***

Corr:

0.587***

Corr:

0.644***

act satv satq
act

satv
satq

10 20 30 200 400 600 800 200 400 600 800

0

50

100

200

400

600

800

200

400

600

800

Figure 1: Pairwise scatterplots and histograms of three measures of academic ability: ACT, SAT-V, SAT-Q.

This provides us with scores from 700 students on three measures of academic ability: ACT (American
College Testing), SAT-V (Scholastic Aptitude Test, Verbal), SAT-Q (Scholastic Aptitude Test, Quantitative).
The histograms and inter-correlation scatterplots of the three variables are shown in Figure 1. As we can
see, there is a relatively high degree of positive inter-correlation between scores on these three tests. We
could hypothesize, therefore, that students’ scores on these three tests are all a result of some underlying
ability, which we might refer to as general academic ability. In those individuals with higher values this
general academic ability, they are likely to have higher scores on ACT, SAT-V, SAT-Q. Individuals with
lower values of general academic ability are likely to have lower scores on ACT, SAT-V, SAT-Q. From this
perspective, general academic ability is a latent variable. It is not something directly unobserved, and possibly
not even directly observable, but as its value changes, the values of the three test scores change too, albeit
probabilistically rather than deterministically.

A latent variable model is any statistical model of a phenomenon where we assume that observed variables are
probabilistic functions of unobserved variables. There are many different types of latent variable models, but
factor analysis is one very widely used one. Amongst other details, as we will see, it assumes that the observed
variables are linear functions, plus normally distributed random errors, of one or more latent variables. It is,
therefore, essentially a multivariate linear regression model where the predictor variables are unobserved.

The factor analysis model
In factor analysis, the observed variables are vectors. In general therefore, we can denote the observed
variables by ~y1, ~y2 . . . ~yi . . . ~yn, where each ~yi is

~yi = [y1i, y2i . . . ydi . . . yDi]ᵀ.

Here, n is the number of independent observations we have, and D is the number of variables per each
observation. For example, using our example above of the academic test scores, D = 3 and n = 700, and ydi

is the score of student i on test d. We assume that each ~yi ∈ RD, where RD denotes D-dimensional Euclidean
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space. In other words, each element of the vector ~yi, i.e. each ydi, is assumed to be a random variable over
the real line.

For each ~yi, there is a corresponding set of K latent variables, which we can denote as

~xi = [x1i, x2i . . . xKi]ᵀ.

Here, K can be said to denote the number of factors, or equivalently, the dimensionality of the latent space
in the model. In principle, at least if we take a Bayesian perspective on factor analysis, K can be be any
positive integer. In practice, however, it is the case that 1 ≤ K < D. In fact, often we want K to be as small
as possible, and certainly much smaller than D. In any case, we also assume each ~xi ∈ RK .

Each ~yi is a linear function of ~xi plus normally distributed errors. Given that ~yi and ~xi are vectors, the linear
relationship between them is easiest to state using matrix notations as follows.

~yi = A~xi +~b+ ~εi.

Here, A is a D × K matrix. This is known as the factor loading matrix. In addition, ~bi and ~εi are D
dimensional vectors. As such, ~yi = A~xi +~b+ ~εi can be represented as follows.

y1i

y2i

...
ydi

...
yDi


=



A11 A12 . . . A1K

A21 A22 . . . A2K

...
...

...
Ad1 Ad2 . . . AdK

...
...

...
AD1 AD2 . . . ADK




x1i

x2i

...
xKi

+



b1
b2
...
bd

...
bD


+



ε1i

ε2i

...
εdi

...
εDi


.

Each ~εi is assumed to be drawn from a D dimensional multivariate normal distribution with zero mean vector
and a diagonal covariance matrix Φ, i.e., ~εi ∼ N(~0,Φ), for each i ∈ n. As we have previously seen, this fact
also entails that ~yi itself has a D dimensional multivariate normal distribution, specifically

~yi ∼ N(A~xi +~b,Φ).

From the description of the factor analysis model thus far, we gain two important perspectives. First, we see
that each ydi is being modelled as a normal (in the sense of normal distribution) linear regression model of
x1i, x2i . . . xKi. Specifically, it is modelled as follows:

ydi = bd +
K∑

k=1
Adkxki + εdi εdi ∼ N(0, φ2

d),

where φ2
d is the dth element of the main diagonal of the matrix Φ. Thus, factor analysis is a just a multivariate

normal linear regression model, albeit with latent predictor variables. From this perspective, and particularly
because Φ is a diagonal matrix, we also see that all of y1i, y2i . . . ydi . . . yDi are statistically independent of
one another conditional on ~xi. In other words, if we know the value of ~xi, then knowing any one or any set of
y1i, y2i . . . ydi . . . yDi provides no information about the values of any other. The importance of this result is
that all the intercorrelations between the elements of the observed variables are explained entirely by the
latent variables. This, in fact, is the purpose of factor analysis. It is a means to explain intercorrelations in
observed data in terms of a smaller set of latent variables.

The final defining feature of the factor analysis model is that the probability distribution over each ~xi is a
K-dimensional multivariate standard normal distribution. A standard multivariate normal distribution has a
mean vector of all zeros, and the identity matrix as its covariance matrix. In other words, we have

~xi ∼ N(~0, I),

where ~0 is a vector of K zeros, and I is D×D matrix with ones along the main diagonal and zeros elsewhere.
It should be noted that there is no loss of generality by assuming a zero mean vector and an identity covariance
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matrix. Any other choice for the mean vector and covariance matrix is equivalent to different choices of the
A matrix and b vector.

From the above model, we obtain the conditional probability distribution of any ~yi given ~xi, which we can
write as P(~yi|~xi, A,~b,Φ). We also have the marginal distribution of ~xi, which we write as P(~xi|~0, I). Both of
these are multivariate normal distributions. As such, we can calculate P(~yi|A, b,Φ), which is the marginal
distribution of ~yi marginalizing over ~xi, as follows.

P(~yi|A, b,Φ) =
∫

P(~yi|~xi, A,~b,Φ)P(~xi|~0, I),

=
∫
N(~yi|A~xi +~b,Φ)N(~xi|~0, I),

= N(~yi|~b,AAᵀ + Φ)

From this, we see that the unconditional or marginal probability distribution over any ~yi is itself a multi-
dimensional normal distribution with mean vector ~b and covariance matrix AAᵀ + Φ. That the covariance
matrix of the elements of the observed vector can be stated as follows

Σ = AAᵀ + Φ,

is sometimes known as the fundamental theorem of factor analysis. From this result, if we write σ2
d as the dth

element of Σ and φ2
d as the dth element of Φ, then we can see that the variances of element d of the observed

vector can be written as follows:

σ2
d =

K∑
k=1

A2
dk + φ2

d.

The first term on the right hand side,
∑K

k=1 A
2
dk, is known as the communality, or the part of the variance

of the observed element d that is explained by the latent factors. The remaining term, φ2
d, is known as the

uniqueness, or the part of the variance of observed element d that is unique and not due to the latent factors.

Exploratory versus confirmatory factor analysis
In exploratory factor analysis the dimensionality of the latent variable space K is assumed to be unknown,
and there are no specific hypotheses about how each factor relates to the elements of the observed vectors. In
confirmatory factor analysis, by contrast, K is assumed to be known and the A matrix is assumed to have
zero elements that reflect that certain factors are assumed to not relate to certain elements of the observed
vector. As an example, in a confirmatory factor analysis with D = 5 elements to each observed vector, we
might hypothesize that there are two latent factors, and that the first factor only relates to elements 1 and 2,
while the second only relates to elements 4, 4, and 5. Given these hypotheses, the A matrix has zero elements
as follows. 

A11 0,
A21 0,
0 A32,
0 A42,
0 A52,


A major issue in exploratory factor analysis, as we see, relates both the number of factors and the optimal
rotation of the A matrix. By contrast, neither of these issues arise in confirmatory factor analysis.

Parameter estimation
There are a variety of methods used to estimate the parameters of the factor analysis model. We will only
consider maximum likelihood estimation here, but this is a major and widely used method in factor analysis.

As we’ve seen, the observed data in the factor analysis model are the n vectors ~y1, ~y2 . . . ~yi . . . ~yn. The
parameters to be estimated are the D ×K matrix A, the vector with D element vector ~b, and the D ×D
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diagonal matrix Φ. The log of the likelihood of the data given these parameters is as follows:

L(A,~b,Φ|~y1 . . . ~yn) =
n∑

i=1
log P(~yi|A, b,Φ),

= −nD2 log(2π)− n

2 log |Σ| − 1
2

n∑
i=1

(~yi −~b)ᵀΣ−1(~yi −~b).

The maximum of this function with respect to the vector ~b is obtained by setting ~b equal to the sample mean
of the observed vectors, i.e.,

argmax
~b

L(A,~b,Φ|~y1 . . . ~yn) = ȳ = 1
n

n∑
i=1

~yi.

By substituting ~b with ȳ, the log-likelihood function over A and Φ is as follows:

L(A,Φ|~y1 . . . ~yn) = −n2
(
D log(2π) + log |Σ|+ Tr(Σ−1S)

)
,

where S is the sample covariance matrix of the data, i.e.

S = 1
N

N∑
i=1

(~yi − ȳ)(~yi − ȳ)ᵀ.

Maximizing L(A,Φ|~y1 . . . ~yn) with respect to A and Φ is complicated by the fact that if Â maximizes this
function, so too does any orthogonal rotation of Â, and so therefore there are an infinite number of solutions
to this optimization problem. However, a common solution to this idenitifiability problem is to require the
matrix AᵀΦ−1A to be diagonal. With this constraint, Jöreskog (1967) introduced an iterative algorithm
for maximum likelihood estimation. This algorithm is equivalent to positioning the latent factors on the
principal axes: The first axis has the maximum variance, the second axis is orthogonal to the first and has
the second greatest variance, and so on.

Axis rotation
In exploratory factor analysis, the estimated A matrix, and as a consequence, the axis of the latent space are
not always initially ideally suited for interpretation. Ideally, we often require a so-called simple structure in A.
This is where, for each element of the observed vector, a single factor alone primarily accounts its variance,
and each factor primarily accounts for the variance of only a subset, rather than all, the observed elements.

To achieve this imprecisely defined goal of simple structure, a plethora of different rotation methods may be
employed. Some of these rotations are othogonal. The most well known of these is varimax, which attempts
to maximize the sum of variances on any given element of the observed vector. Other rotation methods
are oblique, which means that the axes are no longer orthogonal. After an oblique rotation, values of the
elements of the latent vectors are now correlated with one another. Some of the most well known of the
oblique rotations are promax and oblimin.

Examples
Here, we will consider exploratory factor analysis examples. Confirmatory factor analysis, by contract, will
be covered when we consider sem more generally in a later section.

We will begin with the sat_act data set mentioned above. For simplicity, however, we will remove rows with
NA elements first.

sat_act %<>% na.omit()

We will perform a factor analysis with K = 1 (the default), using maximum likelihood as the estimation
method, and, initially, with no rotation. For this, we will use the factanal function from the stats package.
In this case, it is used as follows.
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M <- factanal(~ act + satv + satq,
data = sat_act,
factors = 1,
rotate = 'none')

It should be noted that factanal will normalize the data. In other words, it will subtract the mean of the
three scores from all scores, and divide by the standard deviation. This is generally done for convenience, but
does not affect the results. Amongst other things, this standardization makes the sample covariance matrix
identical to sample correlation matrix.

The A factor loading matrix is obtained as follows.

M$loadings
#>
#> Loadings:
#> Factor1
#> act 0.715
#> satv 0.784
#> satq 0.822
#>
#> Factor1
#> SS loadings 1.801
#> Proportion Var 0.600

Because we have only one factor, the communality for each element of the observed vector is the square of
the values of A. In other words, the communalities for the three elements are as follows.

M$loadings %>% as.vector() %>% raise_to_power(2)
#> [1] 0.5107335 0.6150754 0.6749130

The sum of the communalities for each factor are 1.801, and these are listed under SS loadings. The
uniqueness, which are the diagonal elements of the diagonal covariance matrix Φ is obtained as follows.

M$uniquenesses
#> act satv satq
#> 0.4892665 0.3849246 0.3250870

These sum to 1.199. Given that the sum of uniquesnesses and the sum of the communalities equal the sum of
the variances, from this, we can see that the communalities account for 1.801 out of 1.801 plus 1.199, which
is 0.6, as given by Proportion Var above.

Using the factor loadings and the uniquenesses, we can estimate the values of the latent vector corresponding
to ~y as follows.

~̂xi = AᵀΣ−1~yi,

where Σ = AAᵀ + Ψ as above. These estimates latent vectors can be obtained if we set scores =
"regression" in the call of factanal above.

M <- factanal(~ act + satv + satq,
data = sat_act,
factors = 1,
rotate = 'none',
scores = 'regression')

The estimates are then available as scores. For example, we can see the first few inferred values as follows.

x_est <- M$scores %>% head()
x_est
#> Factor1
#> 1 -1.0151634
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#> 2 -0.1189794
#> 3 -1.3513613
#> 4 -0.6757088
#> 5 -0.1393982
#> 6 0.1717458

In general, given the estimated values of each ~xi, the predicted values of the corresponding ~yi according to
the model can be obtained follows.

~̂yi = A~̂xi +~b.

In the present example, the original data were standardized, as mentioned above. Therefore, we obtain
predictions of ~yi by A~̂xi, and then multiplying by the sample standard deviations and adding the sample
means. In the following, we will do this for the predictions corresponding to the x_est above.

y_bar <- apply(sat_act, 2, mean)
y_sd <- apply(sat_act, 2, sd)

y_pred <- M$loadings %*% t(x_est)

sweep(y_pred, 1, y_sd, `*`) %>%
sweep(1, y_bar, `+`) %>%
t()

#> act satv satq
#> 1 25.04539 522.1341 513.7751
#> 2 28.13944 601.7631 598.9137
#> 3 23.88467 492.2617 481.8359
#> 4 26.21735 552.2958 546.0237
#> 5 28.06895 599.9488 596.9739
#> 6 29.14317 627.5950 626.5329

For comparison, we can compare these predictions with the corresponding values of the original data, which
are as following.

head(sat_act)
#> # A tibble: 6 x 3
#> act satv satq
#> <dbl> <dbl> <dbl>
#> 1 24 500 500
#> 2 35 600 500
#> 3 21 480 470
#> 4 26 550 520
#> 5 31 600 550
#> 6 28 640 640

Now, let us consider another example. For this, we will use the bfi data set from the psych package. This
provides data on 25 personality variables from 2800 participants in a psychology study. In the following code,
we select just the personality variables from bfi, and reverse code selected items as required.

data(bfi, package = 'psych')
bfi_df <- bfi %>%

select(A1:O5) %>%
# reverse code selected items
mutate_at(c('A1', 'C4', 'C5', 'E1', 'E2', 'O2', 'O5'),

~ 7 - .)

In Figure 2, we show the correlation matrix heatmap of bfi_df. This is produced by calculating the
correlation matrix use stats::cor and then using geom_tile to generate the heatmap, as in the following
code.
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bfi_df %>%
as.matrix() %>%
cor(use = 'complete.obs') %>%
as_tibble(rownames = 'x') %>%
pivot_longer(cols = -x, names_to = 'y', values_to = 'cor') %>%
ggplot(mapping = aes(x = x, y = y, fill = cor)) +
geom_tile(colour = 'white') +
scale_fill_gradient(low = "white", high = "steelblue")

A1
A2
A3
A4
A5
C1
C2
C3
C4
C5
E1
E2
E3
E4
E5
N1
N2
N3
N4
N5
O1
O2
O3
O4
O5

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5 N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
x

y

0.0

0.5

1.0
cor

Figure 2: Heatmap of the correlation matrix of 25 personality variables.

As can be seen on the diagonal from lower left to top right, there seem to be 5 clusters of 5 items each of
which have relatively high intercorrelation. However, this is not the only notable intercorrelation. There is
also a relatively high intercorrelation between the 15 A, C, and E items. There are some negative correlation
(shown by near white colours) between some sets of items.

For factor analysis of this data, we will use the fa function from the psych package. This function is more
powerful and versatile than the previously used factanal. In the following code, we perform a factor analysis
with 5 factors (nfactors) using factoring method of maximum likelihood (fm = "ml"), and also request no
rotation.

library(psych)
M <- fa(bfi_df, nfactors = 5, fm="ml", rotate = 'none')

The factor loading matrix of a psych::fa model can viewed using the print function on M$loadings with a
cutoff value to suppress relatively low values, as in the following example.

print(M$loadings, cutoff = 0.3)

We show the output of this print function in Figure 3 on the left hand side. As is clear, in this model, the
values of first column of A, which corresponds to the factor labelled ML1, has the highest absolute values.
This is confirmed by the SS loadings, listed at the botton of 3 left, that provide the sum of the square of
these values.

apply(M$loadings^2, 2, sum)
#> ML1 ML2 ML3 ML4 ML5
#> 4.3669334 2.3428640 1.5051772 1.1850394 0.9530152
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Loadings:
ML1 ML2 ML3 ML4 ML5

A1
A2 0.390 0.346 0.339
A3 0.460 0.391 0.328
A4 0.366
A5 0.540
C1 0.463
C2 0.515
C3 0.407
C4 0.438 0.491
C5 0.484 0.345
E1 0.358 0.310
E2 0.581 -0.329
E3 0.455 0.430
E4 0.539 0.337
E5 0.414 0.421
N1 -0.593 0.560
N2 -0.578 0.545
N3 -0.529 0.487
N4 -0.584
N5 -0.417 0.305
O1 0.402
O2 0.368
O3 0.337 0.337 0.484
O4 0.329
O5 0.435

ML1 ML2 ML3 ML4 ML5
SS loadings 4.367 2.343 1.505 1.185 0.953
Proportion Var 0.175 0.094 0.060 0.047 0.038
Cumulative Var 0.175 0.268 0.329 0.376 0.414

Loadings:
ML2 ML1 ML3 ML5 ML4

A1 0.364
A2 0.584
A3 0.648
A4 0.441
A5 0.340 0.585
C1 0.523
C2 0.621
C3 0.547
C4 0.629
C5 0.565
E1 0.587
E2 0.679
E3 0.482 0.336 0.301
E4 0.601 0.370
E5 0.486 0.314
N1 0.800
N2 0.782
N3 0.716
N4 0.558 -0.356
N5 0.522
O1 0.521
O2 0.434
O3 0.611
O4 0.375
O5 0.511

ML2 ML1 ML3 ML5 ML4
SS loadings 2.668 2.254 1.967 1.947 1.518
Proportion Var 0.107 0.090 0.079 0.078 0.061
Cumulative Var 0.107 0.197 0.276 0.353 0.414

Figure 3: The A factor loading matrix for the factor analysis model with no rotation (left), and with varimax
rotation (right). The rotated solution achieves a simple structure.

Clearly, this unrotated solution does not have a simple structure whereby each element of the observed
variable is accounted for by primarily one factor, and each factor primarily accounts for a small subset of the
observed elements. In the following code, therefore, we request a varimax rotation.

Mv <- fa(bfi_df, nfactors = 5, fm="ml", rotate = 'varimax')

Again, we can print this loading matrix in the following code, and this is shown in Figure 3 on the right hand
side.

print(Mv$loadings, cutoff = 0.3)

In this case, we can see that each variable is primarily accounted for one factor and each factor accounts for a
small number of items. Moreover, and not unexpectedly given our knowledge of this data set, each factor
primarily accounts for all the items in one of the A, C, E, N, or O sets.

Model fit statistics

To evaluate model fits in factor analysis, we can in principle use methods that are standard throughout all
of statistics for model evaluation. Nonetheless, in factor analysis and, as we will see, in sem generally, a
particular special set of model fit indices are widely used. There are, in fact, dozens of these global fit indices,
but here we will concentrate on some of the more widely used ones.

The model chi-square is defined as
χ2

M = n′fmle,

where fmle is the minimum value of the objective function that is being minimized to maximize the log of
likelihood. In other words, to maximize the log of the likelihood in a factor analysis, an alternative function
that is the negative of the log of the likelihood, plus some constant terms, is minimized. The value of this
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objective function at its minimum, which is equivalent to the value of this objective function using the
maximum likelihood estimates of the parameters, is fmle. The value of n′ on the other hand is primarily
based on the sample size. In some cases, n′ is exactly the sample size, i.e. n using our terminology above. In
other cases, it is the sample size minus one. In others, it is n− 1− (2D + 5)/6− 2K/3, and this is what is
used in psych::fa.

In psych::fa, we can obtain the value of fmle as follows.

Mv$objective
#> [1] 0.6279861

The value of χ2
M is obtained as follows.

Mv$STATISTIC
#> [1] 1749.883

Given that χ2
M a function of fmle scaled primarily by sample size, then the lower the χ2

M , the better the fit.
Furthermore, for the hypothesis that the model is an exact fit of the observed data, χ2

M will be distributed
as χ2 distribution whose degrees of freedom are so-called model degrees of freedom. The model degrees of
freedom are the number of observed correlations in the data minus the number of parameters in the model.

D(D − 1)
2︸ ︷︷ ︸

Correlations

−
(
DK − K(K − 1)

2

)
︸ ︷︷ ︸

parameters

.

Note that the number of parameters is less than D×K given the constraints that we impose on the A matrix.
In psych::fa, the model degrees of freedom are obtained as follows.

Mv$dof
#> [1] 185

Thus, according to the hypothesis of exact fit, the expected value of χ2
M will be 185. If χ2

M was exactly 185,
this would correspond to a p-value of close to 0.5. On the other hand, values of χ2

M much greater than the
expected value of 185 will correspond to low p-values. In the case of model Mv, the value of χ2

M is much
greater than 185 and so the corresponding p-value is very low. We can obtain this p-value as follows.

Mv$PVAL
#> [1] 1.394484e-252

In addition to χ2
M , the root mean square error of approximation (rmsea) is a widely used measure of model

fit. It is defined as follows.

rmsea =

√
χ2

M − dfM
dfM (N − 1) ,

where dfM is the model’s degrees of freedom. However, if χ2
M < dfM , rmsea is defined as zero. In psych::fa,

rmsea is calculated by the following related formula.√
fmle

dfM
− 1

dfM − 1

This can be obtained as follows, which provides the rmsea score and also the 90% confidence interval.

Mv$RMSEA
#> RMSEA lower upper confidence
#> 0.05496255 0.05263677 0.05734094 0.90000000

rmsea is usually interpreted as departure from close, as opposed to perfect, fit. Thus, the greater the value
of χ2

M − dfM , the further the departure from close fit. There is no consensus on what counts sufficiently low
values of rmsea to indicate a good fit, but traditionally, values less than 0.05 or 0.01 are usually taken to
indicate good and very good fits, respectively.
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Inferring the number of factors

Thus far we have assumed that the number of factor is known. This is often not the case. Ultimately, the
problem of inferring or estimating the number of parameters is an example of the standard problem of model
comparison that is ubiquitous problem in statistics generally. However, in the context of (exploratory) factor
analysis, a number of special procedures are usually followed to decide on the number of factors. Here, we will
describe the method of parallel analysis Horn (1965) implemented using psych::fa.parallel. This method
is related to the widely used scree method whereby eigenvalues of a principal axis factoring in the factor
analysis are plotted in descending order. The eigenvalues will indicate the amount of variance accounted for
by each of the principal axes. Usually, we simply look to try to indentify where these eigenvalues begin to
tail off. By contrast, the parallel analysis compares the scree plot to eigenvalues from principal axis factoring
of random correlation matrices of the same size as that of the data.

In the following code, we perform the same factor analyses as we used previously, and compare the scree plot
these factor analyses to the average scree plot of the from n.iter = 100 random matrices.

fa.parallel(bfi_df, fm = 'ml', fa = 'fa', n.iter = 100)

5 10 15 20 25

0
1

2
3

4
5

Factor Number

ei
ge

n 
va

lu
es

 o
f p

rin
ci

pa
l f

ac
to

rs   FA  Actual Data
  FA  Simulated Data
 FA  Resampled Data

Figure 4: Parallel analyses scree plots to indentify the number of factors to use the factor analysis.

The resulting scree plots are shown in Figure 4. As we can see, 6 factors have eigenvalues greater than the
corresponding average eigenvalues of the random matrices.

Mediation analysis
In a mediation model, the effect of one variable x on another y is due to its effect on a third variable m,
which then affects y. Changes in the variable x lead to changes in m that then lead to changes in y. As
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an example of a mediation effect, it is widely appreciated that tobacco smoking x raises the probability of
lung cancer y, and that this effect is due to tar (tobacco residue) produced by the burning of the tobacco
accumulating the lungs m. This tar contains the carcinogenic substances that cause the lung cancer.

In general, a mediation model describes a chain of effects. One possibility, known as pure or full mediation
model, assumes that the effect of x on y is entirely due to its effect on m. This can be depicted by the
following path diagram.

x ym

Another possibility is a partial mediation model. In this case, we assume that x affects m and m affects y as
before, but there is also a direct effect of x on y, as in the following diagram.

x y

m

Assuming that we are dealing with a normal linear model1, we can write a pure mediation model as follows:

for i . . . 1 . . . n, yi ∼ N(µy
i , σ

2
y), µy

i = βy0 + βymmi,

mi ∼ N(µm
i , σ

2
m), µm

i = βm0 + βmxxi,

which can also be written

for i . . . 1 . . . n, yi = βy0 + βymmi + εyi , εyi ∼ N(0, σ2
y),

mi = βm0 + βmxxi + εmi , εmi ∼ N(0, σ2
m).

By contrast, the partial mediation model can be written as follows.

for i . . . 1 . . . n, yi ∼ N(µy
i , σ

2
y), µy

i = βy0 + βymmi + βyxxi,

mi ∼ N(µm
i , σ

2
m), µm

i = βm0 + βmxxi,

or equivalently as

for i . . . 1 . . . n, yi = βy0 + βymmi + βyxxi + εyi , εyi ∼ N(0, σ2
y),

mi = βm0 + βmxxi + εmi , εmi ∼ N(0, σ2
m).

A note on nomenclature. In the mathematical descriptions of structural equation models and related models,
there is an avoidable proliferation of symbols, subscripts and superscripts. For the most part, we aim to keep
the notation and symbols as consistent with other models as possible. For example, we will continue to use β
for coeficients. When will use double subscripts for the coefficients to indicate that it is the coefficient to one
node from another. For example, by βyx, we mean the coefficient to y from x, and by βmx, we mean the
coefficient to m from x. For intercept terms, which are not from anywhere, we will write, for example, βm0
or βy0

Example 1
In order to explore mediation models, let us begin with data generated according to a specific model. While
our aim is always to model real world data, using generated data can be very useful when we are learning
how and why the model works. The data we will generate is from a partial mediation model.

1There is no necessary restriction to normal and linear models in mediation analysis or in structural equation modelling
generally.
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N <- 100

b_m0 <- 1.25; b_mx <- 1.25;
b_y0 <- -0.5; b_ym <- 1.75; b_yx <- 0.75;
sigma_m <- 1.5; sigma_y <- 2.0

mediation_df <- tibble(x = rnorm(N, sd = 2),
m = b_m0 + b_mx * x + rnorm(N, sd = sigma_m),
y = b_y0 + b_ym * m + b_yx * x + rnorm(N, sd = sigma_y)

)

Let us now set up this model using lavaan.

library(lavaan)

mediation_model_spec_1 <- '
y ~ m + x
m ~ x
'

Notice that what have done so far is to simply creare a string mediation_model_spec_1. In this string, we
write two R formulas, using the same syntax that we have used for formulas all models so far, i.e. using the ~
symbol. This symbol has an identical interpretation to how it used in, for example, lm, glm, etc. For example,
m ~ x means m is regressed on x and, or m is dependent on x, or m is a random variable that is a function of x,
etc. As we will see, there are more model specification symbols in lavaan than are usually used in regression
models in R, but for the present mediation model, we only need the ~ symbol. Thus, to specify the partial
mediation model, we need only state that y is dependent on m and x, and m is dependent on x. Just as in, for
example, linear regression using lm, the presence of an intercept term is assumed. In other words, by writing
y ~ m + x, we are assuming that for each i, yi = βy0 + βymmi + βyxxi + εyi . However, by default, unless
we explicitly state in the formula that we are using an intercept term, we will not get information about it.
Therefore, we can re-write mediation_model_spec_1 as follows.

mediation_model_spec_1 <- '
y ~ 1 + m + x
m ~ 1 + x
'

Now that we have a model specification, we call lavaan::sem with reference to mediation_model_spec_1,
and this fits the model using maximum likelihood estimation.

mediation_model_1 <- sem(mediation_model_spec_1,
data = mediation_df)

For now, let us just look at the parameter estimates of mediation_model_1.

parameterEstimates(mediation_model_1)
#> lhs op rhs est se z pvalue ci.lower ci.upper
#> 1 y ~1 -0.493 0.243 -2.030 0.042 -0.970 -0.017
#> 2 y ~ m 1.843 0.118 15.648 0.000 1.612 2.073
#> 3 y ~ x 0.639 0.180 3.558 0.000 0.287 0.991
#> 4 m ~1 1.256 0.164 7.665 0.000 0.935 1.577
#> 5 m ~ x 1.280 0.083 15.471 0.000 1.118 1.443
#> 6 y ~~ y 3.633 0.514 7.071 0.000 2.626 4.640
#> 7 m ~~ m 2.620 0.371 7.071 0.000 1.894 3.347
#> 8 x ~~ x 3.826 0.000 NA NA 3.826 3.826
#> 9 x ~1 0.305 0.000 NA NA 0.305 0.305

The first thing to note about this output is that it gives us the estimates for all our coefficients, and also the
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variances σ2
y and σ2

m. These variances are labelled in the output with y ~~ y and m ~~ m, which is lavaan
syntax for specifying a variance or covariance, as we will see. It also provides estimates of the mean and
variance x. This is an important point in that it shows that it is creating a probabilistic model for all three
variables in the model. In regression models, by contrast, variables like x are treated as given and their values
are not modelled. Next, we note that, as expected, the estimated values of coefficients and variances are all
close to the true values that we used to generate the data.

Model comparison

In mediation analysis, a major aim is evaluating first whether there is evidence of a mediation of the effect of
x on y by m, and then whether this is pure or partial mediation. To do so, we first specify and then fit the
full mediation model using similar syntax and commands to what we used for mediation_model_spec_1 an
d mediation_model_0.

mediation_model_spec_0 <- '
y ~ 1 + m
m ~ 1 + x

'
mediation_model_0 <- sem(mediation_model_spec_0,

data = mediation_df)

Now, let us look at how well these two models fit the data using aic.

mediation_models <- c(model_0 = mediation_model_0,
model_1 = mediation_model_1)

map_dbl(mediation_models, AIC)
#> model_0 model_1
#> 816.8326 806.9121

As we can see, the aic for mediation_model_1 is lower than that of mediation_model_0 by approximately
9.92. By the standards of aic where differences of 10 or more indicate that the model with the lower value is
overwhelmingly better able to generalize to new data, this indicatest that the data is explained best by a
partial rather than a pure mediation model.

Even if we just have three variables x, y, and m, and assume that there may be, or may not be, a directed
arrow between x and m, m and y, and x and y, then there are exactly 23 = 8 possible models to consider.
These are shown in shown in Figure 5. In the following code, we create a list with 8 elements that are the
specification strings for each of these 8 model versions (using the same a-h labels as in Figure 5), explicitly
stating the intercept terms for each one.

mediation_models_specs <- within(list(),{

model_a <- '
x ~ 1
m ~ 1
y ~ 1

'
model_b <- '

x ~ 1
m ~ 1 + x
y ~ 1

'
model_c <- '

x ~ 1
m ~ 1
y ~ 1 + m
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Figure 5: The 23 = 8 possible versions of a simple mediation model with variables x, m, and y, assuming
that there may be or may not be a directed arrow between x and m, m and y, and x and y. In Version (a),
all three variables are independnet. Version (e) is the pure mediation model. Version (g) is equivalent to a
regression model, but where x and m have models. Version (h) is the partial mediation model.

'
model_d <- '

x ~ 1
m ~ 1
y ~ 1 + x

'
model_e <- '

x ~ 1
m ~ 1 + x
y ~ 1 + m

'
model_f <- '

x ~ 1
m ~ 1 + x
y ~ 1 + x

# Force independence of y and m
y ~~ 0*m

'
model_g <- '

15



x ~ 1
m ~ 1
y ~ 1 + x + m

'
model_h <- '

x ~ 1
m ~ 1 + x
y ~ 1 + x + m

'
})

Having each model specified as an element of a list, we now use purrr::map to fit each model and calculate
its aic score.

mediation_models <- map(mediation_models_specs,
~sem(., data = mediation_df)

)

map_dbl(mediation_models, AIC) %>%
sort()

#> model_h model_e model_g model_f model_c model_d model_b model_a
#> 1228.884 1238.804 1349.074 1350.682 1358.995 1470.873 1480.709 1600.900

These results are as we expect. The version with the lowest aic is model_h, which is the partial mediation
model. This is followed by model_e, which is the full mediation model.

Before we proceed, let us now generate some data, using a procedure similar to above, from a pure mediation
model, and then fit all 8 possible versions of the x, m, y mediation model to the data, and evaluate the fit.

mediation_df_new <- tibble(x = rnorm(N, sd = 2),
m = b_m0 + b_mx * x + rnorm(N, sd = sigma_m),
y = b_y0 + b_ym * m + rnorm(N, sd = sigma_y)

)

We used all the same settings to generate mediation_df_new as we used to generate mediation_df, but we
removed the b_yx * x term, which is equivalent to setting b_yx to zero. Now, let us fit the 8 models to
mediation_df_new and evaluate the fit.

mediation_models_new <- map(mediation_models_specs,
~sem(., data = mediation_df_new)

)

map_dbl(mediation_models_new, AIC) %>%
sort()

#> model_e model_h model_f model_c model_g model_b model_d model_a
#> 1268.894 1270.717 1363.463 1401.127 1402.949 1466.873 1495.696 1599.106

Results here are close to what we would expect. The version with the lowest aic is model_e, which is the
pure mediation model. This is followed by model_h, which is the partial mediation model. Note, however,
that the aic value of the partial mediation model is 1270.72, while the aic of the full model is 1268.89, which
is only 1.82 less. By the standards of aic, this is not a noteworthy difference and thus there is not much to
distinguish between model_e and model_h. However, it is interesting to examine the parameter estimates of
model_h.

mediation_models_new %>%
extract2('model_h') %>%
parameterEstimates()

#> lhs op rhs est se z pvalue ci.lower ci.upper
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#> 1 x ~1 -0.186 0.209 -0.892 0.372 -0.596 0.223
#> 2 m ~1 1.049 0.161 6.501 0.000 0.733 1.365
#> 3 m ~ x 1.293 0.077 16.816 0.000 1.143 1.444
#> 4 y ~1 -0.335 0.265 -1.263 0.207 -0.855 0.185
#> 5 y ~ x 0.087 0.207 0.422 0.673 -0.319 0.494
#> 6 y ~ m 1.732 0.138 12.567 0.000 1.462 2.002
#> 7 m ~~ m 2.583 0.365 7.071 0.000 1.867 3.299
#> 8 y ~~ y 4.906 0.694 7.071 0.000 3.546 6.266
#> 9 x ~~ x 4.367 0.618 7.071 0.000 3.156 5.577

As we can see, the parameter estimate for βyx is close to zero, with an estimate of 0.087 and a confidence
interval of (−0.319, 0.494). In that sense, model_h is essentially a pure mediation model.

Direct versus indirect effects

In a standard linear regression model of the following kind

yi ∼ N(µi, σ
2), µi = β0 + β1xi, i ∈ 1 . . . n,

a change in any xi by 1 unit, i.e., xi + 1, would always lead to a change of β1 in the expected, i.e. the average,
value of the outcome variable. This is easy to see. Let x′i = xi + 1, and

µi = β0 + β1xi, µ′i = β0 + β1x
′
i,

= β0 + β1(xi + 1),
= β0 + β1xi + β1,

= µi + β1,

and so µ′ − µ = β1. Regardless of how many predictor variables there are in the linear regression, a change in
predictor k by one unit, always leads to a change βk in the average value of the outcome variable. By contrast,
in a mediation model, whether full or partial, the effect of a change in the predictor x on the outcome y is
not as simple. First, let us consider a pure mediation model. In this case, as we have seen, we can write each
yi and mi as follows

yi = βy0 + βymmi + εyi , εyi ∼ N(0, σ2
y),

mi = βm0 + βmxxi + εmi , εmi ∼ N(0, σ2
m).

From this, we have

yi = βy0 + βym (βm0 + βmxxi + εmi ) + εyi ,

= βy0 + βymβm0 + βymβmxxi + βymε
m
i + εyi ,

and this entails
yi ∼ N(µi, β

2
ymσ

2
m + σ2

y), µi = βy0 + βymβm0 + βymβmxxi.

Following the same reasoning as above for the case of standard linear regression, this entails that in a pure
mediation model a unit change in xi leads to a change of βymβmx in the expected value of y. In the case of
the partial mediation model, we saw already that each yi and mi in the model can be defined as follows:

yi = βy0 + βymmi + βyxxi + εyi , εyi ∼ N(0, σ2
y),

mi = βm0 + βmxxi + εmi , εmi ∼ N(0, σ2
m).

From this, we have

yi = βy0 + βym(βm0 + βmxxi + εmi ) + βyxxi + εyi ,

yi = βy0 + βymβm0 + βymβmxxi + βyxxi + βymε
m
i + εyi ,
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which entails
yi ∼ N(µi, β

2
ymσ

2
m + σ2

y), µi = βy0 + βymβm0 + (βymβmx + βyx)xi,

and following the reasoning above, this entails that unit change in xi leads to a change of (βymβmx + βyx) in
the expected values of yi. In general in a mediation model, we have following:

indirect effect︷ ︸︸ ︷
βymβmx +

direct effect︷︸︸︷
βyx︸ ︷︷ ︸

total effect

.

If there is no direct effect, as would be the case in pure mediation model, then the total effect is equal to the
indirect effect.

In a lavaan mediation model, we can create single variables that measure the direct, indirect and total
effects. To do so, we must first use labels for our original parameters, i.e. the coefficients, and then use the :=
operator to create new variables that are functions of the original parameters.

mediation_model_spec_1 <- '
y ~ 1 + b_ym * m + b_yx * x
m ~ 1 + b_mx * x

# Define effects
indirect := b_ym * b_mx
direct := b_yx
total := b_yx + (b_ym * b_mx)
'

We can fit this model as per usual.

mediation_model_1 <- sem(mediation_model_spec_1,
data = mediation_df)

In the usual parameter estimates output, we can use dplyr::filter to isolate these effects:

parameterEstimates(mediation_model_1) %>%
filter(label %in% c('indirect', 'direct', 'total')) %>%
select(label:ci.upper)

#> label est se z pvalue ci.lower ci.upper
#> 1 indirect 2.359 0.214 11.002 0 1.939 2.779
#> 2 direct 0.639 0.180 3.558 0 0.287 0.991
#> 3 total 2.998 0.181 16.566 0 2.643 3.353

As we can see, for example, the estimated effect for the total effect is 2.998, and the 95% confidence interval
on this effect is (2.643, 3.353).

Example 2: Modelling graduate school success
In the following gre_df data set, we have grade point average (GPA) scores for high school (hs), college
(col), graduate school (grad), and Graduate Record Examination (GRE) scores (gre) from 200 individuals.

grad_df <- read_csv('data/grad.csv')

The scatterplot matrix, histograms, and intercorrelation matrix for these four variables are shown in Figure 6.
As is clear from these plots, there is a high positive intercorrelation between all four variables.

To explore this data, we first perform a standard multiple linear regression predicting grad from all other
variables.

coefs_summary <- function(model) summary(model)$coefficients

lm(grad ~ ., data = grad_df) %>%
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Figure 6: Scatterplot matrix, histograms, and intercorrelation matrix for the hs, gre, col, and grad scores.

coefs_summary()
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.9711123 3.54114285 1.968605 5.040816e-02
#> hs 0.3723267 0.07617483 4.887792 2.116731e-06
#> gre 0.3694099 0.07848502 4.706756 4.749912e-06
#> col 0.1233100 0.08504079 1.450010 1.486539e-01

From this, we see that when hs and gre are known, col does not tell us much about variability in grad
scores, and if we drop col, as we do in the following code, there is no virtually no change in aic scores.

lm(grad ~ ., data = grad_df) %>% drop1('col')
#> Single term deletions
#>
#> Model:
#> grad ~ hs + gre + col
#> Df Sum of Sq RSS AIC
#> <none> 12000 826.86
#> col 1 128.72 12128 827.00

On the other hand, we see that hs and col together are predictors of gre scores.

lm(gre ~ hs + col, data = grad_df) %>%
coefs_summary()

#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 15.5338947 3.01804716 5.147002 6.382242e-07
#> hs 0.3093503 0.06554338 4.719779 4.471315e-06
#> col 0.4004889 0.07173143 5.583172 7.756667e-08

Droping either hs or col from this model would lead to a substantial increase in aic scores.

lm(gre ~ hs + col, data = grad_df) %>%
drop1()

#> Single term deletions
#>
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#> Model:
#> gre ~ hs + col
#> Df Sum of Sq RSS AIC
#> <none> 9938.8 787.18
#> hs 1 1123.9 11062.7 806.60
#> col 1 1572.6 11511.5 814.56

From this, we may propose two hypothetical models that involve mediation of the effect of col on grad via
its effect on gre. The two variants of this model are a pure (model_0) and a partial (model_1) mediation
model.

grad_mediation_models_specs <- within(list(),{
model_0 <- '

grad ~ hs + gre
gre ~ hs + col

'

model_1 <- '
grad ~ hs + b_grad_gre*gre + b_grad_col*col
gre ~ hs + b_gre_col*col

# labels for indirect, direct, and total
direct := b_grad_col
indirect := b_gre_col*b_grad_gre
total := b_grad_col + (b_gre_col*b_grad_gre)

'
})

col

hs

gre grad

(a)

col

hs

gre grad

(b)

Figure 7: A full (a) and partial (b) mediation model of the effect of col on grad via its effect on gre.

These models are depicted in Figure 7. Note that in these diagrams, we have a doubled ended arrow from
col to hs. This indicates that col and hs are correlated, or more precisely, that col and hs are assumed to
be drawn from a 2d normal distribution with a full covariance matrix, i.e. allowing for non-independence of
col and hs.

grad_mediation_models <- map(grad_mediation_models_specs,
~sem(., data = grad_df)

)

In terms of aic, these two models are practically identical.

map_dbl(grad_mediation_models, AIC)
#> model_1 model_0
#> 2749.189 2749.323

Likewise, by performing a log likelihood ratio test, we find there is no significant difference between the two
models.
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grad_mediation_models %$%
anova(model_0, model_1)

#> Chi-Squared Difference Test
#>
#> Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
#> model_1 0 2749.2 2772.3 0.000
#> model_0 1 2749.3 2769.1 2.134 2.134 1 0.1441

From these results, it implies that we can not decide between the full and partial mediation models. However,
similarly to the situation in an earlier example, the coefficient from col to grad in the model_1 is relatively
close to zero and the 95% confidence interval is between -0.042 and 0.288.

grad_mediation_models[['model_1']] %>%
parameterEstimates() %>%
filter(label == 'direct') %>%
select(est:ci.upper)

#> est se z pvalue ci.lower ci.upper
#> 1 0.123 0.084 1.465 0.143 -0.042 0.288

In conclusion then, the effect of college GPA on graduate school GPA is largely, or completely, mediated by
the effect of college GPA on GRE scores.

Structural Equation Modelling

y1 y2 y2 y3 y4

x1 x2 x3

(a)

y1 y2 y2 y3 y4

x1 x2 x3

x4

(b)

Figure 8: Two sem models. In (a), a set of observed variables are functions of a set of latent variables,
which are functions of one another. In (b), a set observed variables are functions of both observed and
latent variables, which are also functions on one another. We use the convention here of shading the nodes
representing observed variables.

The term sem can be used as an umbrella term for a set of related techniques including factor analysis, path
analysis, causal modelling, and even latent variable modelling generally. It is also used in a more narrow sense
that is a kind of combination of factor analysis and path analysis models. In this more specific sense of the
term, a sem model consists a set of observed variables that are linear regression functions of latent variables,
just as in factor analysis. Then, optionally, the latent variables themselves may be linear regression functions
of one another, assuming that these relationships can be described by a directed acyclic graph, just as in a
path analysis model. It may also be the case, however, that in addition to the latent variables, we may have
further observed variables. For example, we may have observed variables that are predictors, or explanatory
variables, of the latent variables. Two simple examples of these sem model scenarios are depicted in Figure 8.

In general, a sem model can be defined by a system of regression models some of whose outcome or predictor
variables may be latent variables. This definition of a sem model treat observed variable path analysis models,
and confirmatory factor analysis as special cases. In the traditional sem model, all the regression model are
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normal linear ones. This was certainly the case in all the factor analysis and path analysis models we have
looked at thus far. While there are no in principle restriction to the regression models being normal and
linear, these are still the default case and there are easy to use sem software packages, including in R, that
specifically assume these types of models.

In this section, we will explore sem using lavaan R package. We will explore some relatively simple models,
though ones that illustrate the major features of sem models. For the models we consider, we will use the
PoliticalDemocracy data set provided by lavaan. This data set is regarded as a classic data set for the
illustration of sem models (Bollen 1979, 1989). In it, there are the following variables.

y1 Expert ratings of the freedom of the press in 1960
y2 The freedom of political opposition in 1960
y3 The fairness of elections in 1960
y4 The effectiveness of the elected legislature in 1960
y5 Expert ratings of the freedom of the press in 1965
y6 The freedom of political opposition in 1965
y7 The fairness of elections in 1965
y8 The effectiveness of the elected legislature in 1965
x1 The gross national product (GNP) per capita in 1960
x2 The inanimate energy consumption per capita in 1960
x3 The percentage of the labor force in industry in 1960

The variables beginning with y_ are all measures of the democracy in a country at two points in time, 1960
and 1965. The variables y_1, y_2, y_3 and y_4 measures democracy variables in 1960. The variables y_5,
y_6, y_7, and y_8 measure the same democracy variables but in 1965. The variables x_1, x_2, and x_3 are
all measures of the economy in the represented countries in 1960.

A reasonable sem model is that variables y_1, y_2, y_3 and y_4 are all functions of a single underlying latent
variable. This latent variable represents democracy in a country in 1960. Likewise, y_5, y_6, y_7, and y_8
are all functions of a single latent variable that represents democracy in 1965. Finally, x_1, x_2, and x_3
are all measures of a single latent variable representing industrialization in 1960. If we leave the model as
such, this leads to a confirmatory factor analysis model. This can be specified using lavaan model syntax as
follows.

sem_model_1_spec <- '
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

'

A note on syntax. We have seen in the previous section that we can define regression and path analysis
models easily in lavaan using the familiar R formula syntax. For example, to specify a regression model
such as yi ∼ β0 + βxxi + βzzi + εi, we would write the following.

y ~ x + z

On the other hand, if we wish to specify a model where, for each i, a set of observed variables y1i, y2i, y3i are
functions of a latent variable xi, we must code this as follows.

x =~ y_1 + y_2 + y_3

Here, the outcome variables are to the right, rather than tothe left, of the formula operator, which in this
case is =~ rather than ~.

We may now fit this model as follows.

sem_model_1 <- sem(sem_model_1_spec,
data = PoliticalDemocracy)

22



As we did in the previous section, we may look at the parameters estimates of this model with the command
parameterEstimates, and we will filter out the individual variance estimates for simplicity.

parameterestimates(sem_model_1) %>%
filter(op == '=~') %>%
select(lhs, op, rhs, est, ci.lower, ci.upper)

#> lhs op rhs est ci.lower ci.upper
#> 1 ind60 =~ x1 1.000 1.000 1.000
#> 2 ind60 =~ x2 2.182 1.910 2.454
#> 3 ind60 =~ x3 1.819 1.521 2.117
#> 4 dem60 =~ y1 1.000 1.000 1.000
#> 5 dem60 =~ y2 1.354 1.012 1.696
#> 6 dem60 =~ y3 1.044 0.750 1.338
#> 7 dem60 =~ y4 1.300 1.029 1.570
#> 8 dem65 =~ y5 1.000 1.000 1.000
#> 9 dem65 =~ y6 1.258 0.936 1.581
#> 10 dem65 =~ y7 1.282 0.974 1.591
#> 11 dem65 =~ y8 1.310 1.009 1.611

Note that one of each of the factor loadings for each latent variable is exactly 1.000000. This is because,
by default, the latent variable variance are not set to be equal to 1 and so it is necessary to constrain the
loading matrix values. This is done by setting one arbitrarily chosen value to 1. We may, however, set the
variances of the latent variables to 1 as follows.

sem_model_1 <- sem(sem_model_1_spec, data = PoliticalDemocracy, std.lv = T)

In addition, we may force the latent factors to be orthogonal as follows.

sem_model_1 <- sem(sem_model_1_spec,
orthogonal = T,
std.lv = T,
data = PoliticalDemocracy)

We now see that the factor loadings are no longer constrained.

parameterestimates(sem_model_1) %>%
filter(op == '=~') %>%
select(lhs, op, rhs, est, ci.lower, ci.upper)

#> lhs op rhs est ci.lower ci.upper
#> 1 ind60 =~ x1 0.667 0.540 0.795
#> 2 ind60 =~ x2 1.464 1.213 1.715
#> 3 ind60 =~ x3 1.217 0.965 1.469
#> 4 dem60 =~ y1 2.133 1.624 2.641
#> 5 dem60 =~ y2 2.993 2.206 3.780
#> 6 dem60 =~ y3 2.322 1.651 2.993
#> 7 dem60 =~ y4 2.922 2.294 3.551
#> 8 dem65 =~ y5 1.907 1.382 2.431
#> 9 dem65 =~ y6 2.703 2.052 3.354
#> 10 dem65 =~ y7 2.627 1.992 3.262
#> 11 dem65 =~ y8 2.891 2.296 3.486

We may assess the fit of this model using any of the many fit indices calculated by sem. For now, we will just
look at those that we have defined above, namely aic, χ2

M , and rmsea.

fitmeasures(sem_model_1,
c("chisq", "df", "pvalue", "aic", "rmsea")

)
#> chisq df pvalue aic rmsea
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#> 197.210 44.000 0.000 3298.667 0.215

First, we see that the χ2
M is well above its expected value and hence the corresponding p-value is very low.

Hence, we confidently reject the hypothesis that this model provides a perfect fit to the data. The aic value
is 3298.667, which is essentially meaningless in itself, but will be valuable when we compare this model to
comparable models later. The rmsea value is 0.215, which is not low by conventional standards.

Let us now expand this model. The pairs of variables (y1, y5), (y2, y6), (y3, y7), (y4, y8), given that they
each measure the same variable but in different years, ought to be correlated. We can implement this as
follows.

sem_model_2_spec <- '
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

y1 ~~ y5
y2 ~~ y6
y3 ~~ y7
y4 ~~ y8

'
sem_model_2 <- sem(sem_model_2_spec,

orthogonal = T,
std.lv = T,
data = PoliticalDemocracy)

Let us now consider the fit indices of this new model.

fitmeasures(sem_model_2,
c("chisq", "df", "pvalue", "aic", "rmsea")

)
#> chisq df pvalue aic rmsea
#> 171.295 40.000 0.000 3280.751 0.209

By comparison to sem_model_1, these indicate the modelling the residual covariances improves the model’s
fit, though clearly the fit is still not satisfactory.

As another example of how we can expand this model, we can model the covariances between some of the
latent variables. For example, dem65 and dem60 are highly likely to be intercorrelated. We can specify this
model as follows.

sem_model_3_spec <- '
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

y1 ~~ y5
y2 ~~ y6
y3 ~~ y7
y4 ~~ y8

dem60 ~~ dem65

'
sem_model_3 <- sem(sem_model_3_spec,

orthogonal = T,
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std.lv = T,
data = PoliticalDemocracy)

We may again assess the model fit.

fitmeasures(sem_model_3,
c("chisq", "df", "pvalue", "aic", "rmsea")

)
#> chisq df pvalue aic rmsea
#> 74.218 39.000 0.001 3185.675 0.110

Clearly, this has improved the model fit.

As a final example, let us model dem65 as a function of dem60 and ind60, dem60 as a function of ind60. We
can specify this model as follows.

sem_model_3_spec <- '
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

dem65 ~ dem60 + ind60
dem60 ~ ind60

y1 ~~ y5
y2 ~~ y6
y3 ~~ y7
y4 ~~ y8

'
sem_model_3 <- sem(sem_model_3_spec,

orthogonal = T,
std.lv = T,
data = PoliticalDemocracy)

First, let us consider the fit indices of this new model.

fitmeasures(sem_model_3,
c("chisq", "df", "pvalue", "aic", "rmsea")

)
#> chisq df pvalue aic rmsea
#> 50.835 37.000 0.064 3166.292 0.071

Again, this extension has further improved the fit of the model.
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