Chapter 15: High Performance Computing with R

Mark Andrews

Contents
Introduction 1
Using C++4 code with Rcpp 2
Using Repp interactively o o L o e 2
Using Repp code in R packages oL e 4
Parallel processing in R 8
The parallel package L e 8
Using clusterCall, clusterApply etc. e 9
Example 1: Bootstrapping e e 11
Example 2: Parallel execution of MCMC models 14
Spark 16
Installing sparklyr and Spark L 17
Copying data to Spark L e e 17
Data wrangling with Spark L 18
Machine learning using Spark L L 21
References 22
Introduction

R is a high level programming language. Like most programming languages of this kind, R is designed for
expressiveness — expressing complex statements and instructions in a simple, clear, and minimal syntax
— rather than speed of execution. Often, R’s relative lack of speed has no practical consequences for us.
For example, if some task in R takes just a few hundred milliseconds to complete, even if we could speed
it up by a few orders of magnitude, we might barely notice this in practice. Moreover, it might well be
a waste of our time re-programming the task in order to achieve this speed up. Nonetheless, there are
times when speed matters, and matters greatly. For example, many algorithms for statistical inference, both
classical and Bayesian, use computationally intensive numerical methods such as numerical optimization,
numerical integration or differentiation, and Monte Carlo methods. For these algorithms to be used for
anything other than trivial problems, they must be implemented as computationally efficiently as possible.
In these cases, implementing them using the set of R programming methods we explored in Chapter 7
might be highly inefficient. Fortunately, there are many ways in which we can continue using R, or at least
using R as our computing environment, and achieve considerable improvement in computational speed and
efficiencies. In this chapter, we will explore two of these approaches: interfacing with C++ code using Rcpp
and coarse-grained parallel processing. We chose these two approaches over others because both are, in their
own ways, very powerful, widely used in the R community, and relatively very straightforward to implement.

In addition to using C++ and parallel programming, in this chapter, we will also provide a very brief
introduction to using Spark with R. Spark is a framework for big data analysis. It is usually used for analysing
data sets that are too large for the RAM of one machine. A comprehensive introduction to Spark would

require a book in itself. Here, we just hope to a brief introduction to what Spark is and how it can be used in
R with sparklyr.

Using C++4 code with Rcpp

C++ is a general purpose programming language. As the name implies, it is an extension of the C programming
language, particularly by the inclusion of object oriented programming. Since the 1990s, C++ has consistently
been one of the most widely used programming of any kind, and its key strengths have been its power,
flexibility, speed, and efficiency. C++ is a low level (relative to R, Python, etc), statically typed, compiled
language. By contrast, R is high level, dynamically typed, interpreted language. What this means is that
C++ code is more explicit, detailed, and less expressive than R. In addition, we must declare the data type
of each variable in C++. For example, if x is an integer, we must explicitly declare that it is at the start of
our code, and it can not be changed to another type such as a string in the rest of the code. This contrasts
with R, where we never need to declare variables types in advance and can change them on the fly. Finally,
C++ must be compiled into binary machine code by a compiler before it can be executed. By contrast, R
code is executed one statement at a time by the R interpreter, which is another program (mostly written in
C) that reads R code and converts it into machine instructions. In practice, this makes C++ more difficult
to master as a programming language, and leads to more verbose, lengthy, and syntactically precise and
unforgiving code. Also, because of its write-compile-execute operation, we can not use it interactively as we
do with R. In return for this pain and inconvenience, however, C++ is much faster than R. As we will see, we
can easily obtain orders of magnitude speed-ups if we rewrite computationally demanding R code in C++.

The Repp package (Eddelbuettel and Balamuta 2017) has made the use of C++ based functions etc from R
particularly easy to accomplish. It allows us to focus on just writing the C++ code and not worry about the
details of how C++ and R communicate. In most real-world cases, we put the C++ code in R packages,
and use an R package builder commands to compile it. We then load that R package just like any other,
e.g. using library(), and then execute the compiled C++ code just like any other R function. We will
demonstrate this procedure in this section. To begin, however, we show how Rcpp can be used interactively
in the console to create C++ functions that are accessible in the R session. This is very helpful for learning
more about how Rcpp works and for prototyping code.

We should be clear that our coverage of Rcpp here is just a brief introduction, aimed at illustrating the general
principles and providing some illustrative examples. It is emphatically not intended to be a comprehensive
introduction. For a lengthier introduction, consider Chapter 19: High performance function with Rcpp in
Wickham (2019), and for a comprehensive introduction, consider Eddelbuettel (2013), written by the author
of Repp.

Using Rcpp interactively

The C++ function we will use as our first example, named average, calculates the arithmetic mean of vector
of values. Its code is as follows.

double average(NumericVector x){

// Declare loop variable

int 1i;

// Declare vector length variable

int n = x.size();

// Declare variable that accumulates values
double total = O;

for (i = 0; i < n; i++){
total += x[i];
}

return total/n;

}

Obviously, the arithmetic mean is already implemented in R as mean, and so we can compare average and
mean. In addition, it is useful to compare average to the following pure R implementation.

averageR <- function(x){
total <- 0

for (i in seq_along(x)){
total <- total + x[i]
}

total/length(x)
}

As we can see, there are a number of differences between the C++ and the pure R implementations of this
function. One of the most obvious differences is that we must declare the data types of the variables in the
C++ code. More specifically, in average, we declare the following:

o The return value of average is stated to be a double, which is a double precision floating point number.
A double is basically a single decimal number. Note that we make this declaration when we define the
function, i.e. double average(....

e The input vector x is declared as a NumericVector, which is an Rcpp specific, rather than C++ general,
data type for using R numeric vectors in C++ functions. Note that we declare this data type in the
function definition.

e The for loop variable i is declared as a integer using the key word int.

o The length of the input vector x is also declared as an integer with int. Note that we obtain the length
of the x vector with x.size().

e The variable total which calculates a running sum of the elements of x is declared as a double.

Other differences between average and averageR include the syntax of the for loop in average follows the
standard C/C++ syntax where we specify the starting value of the loop variable (i = 0), an expression that
determines whether the loop continues on each iteration (i < n; therefore, it terminates when i == n), and
the increment to i on each iteration (i++). Very importantly, notice that C++ starts the vector index at 0
rather than 1. Thus, for example, in C4++, x[1] is the second element of the vector x, while x[0] is the first
element. In R, x[1] is the first element of x, and x[0] returns an empty vector. Also in the for loop, we use
the expression i++. This is shorthand for i += 1, which is itself a shorthand for i = i + 1. The expression
total += 1 is therefore the same as total = total + 1.

Other differences between the C4++ and pure R functions include that in the C+4, we must terminate
statements with ;, we must also have an explicit return statement, we use = and not <- for assignment, and
we do not use the function keyword in function definitions.

Now, let us compile average using the cppFunction from Repp. To do so, we simply paste the above function
into cppFunction as a string.

library (Rcpp)
cppFunction('double average(NumericVector x){

// Declare loop variable

int 1i;

// Declare vector length variable

int n = x.size();

// Declare variable that accumulates values
double total = O;

for (i = 0; i < n; i++){
total += x[i];
}

return total/n;
12D
With this, average is now available to use in our R session just like any other function in R.

x <- runif(le4)
average (x)
#> [1] 0.5003048

We can verify that this is correct with mean or averageR.

mean (x)

#> [1] 0.5003048
averageR (x)

#> [1] 0.5003048

Now, let us compare the performance of these functions using the microbenchmark tool.

library(tidyverse)

theme_set (theme_classic())

library(magrittr)

library(microbenchmark)

results <- microbenchmark(average(x),
mean(x),
averageR (x))

results

#> Unit: microseconds

#> expr min 1q mean median uq max neval
#> average(x) 8.466 8.586 17.51699 8.6560 8.7715 890.911 100
#> mean(x) 25.568 25.643 25.85332 25.7435 25.8585 30.898 100

#> averageR(x) 358.994 361.323 364.64616 362.8650 365.6010 384.992 100

We see the average function is about 21 times faster than the base R averageR function in terms of its
mean performance, and about 42 faster in terms of its median performance, on 100 iterations. We also see
that average is roughly comparable in speed to the built in mean function. The mean is faster in terms of its
mean value over the 100 iterations, but average has a faster median. This is notable because the mean is
much more carefully designed and optimized function than average. This results show the substantial gains
that can be achieved by rewriting our code in C++.

Using Rcpp code in R packages

Using cppFunction is very useful but is intended for interactive use. For C++ code is intended to be used
across multiple R sessions and projects, it preferable to put the code in its own files, compile it once, and
then load the compiled functions into R sessions, R scripts, RMarkdown scripts, etc, and use them like any R
function. The ideal way of doing this is to include the C++ code as a part of an R package, and use standard
package build tools to compile and document the resulting functions.

We will demonstrate this by making a package that calculates a simple moving or rolling average. We will
name this smra (simple moving/rolling average). We will use the create_package function in the usethis
package to create a bare package directory with some of the necessary files and directories. To do this, we
first load the usethis and the fs packages.

library(usethis)
library(fs)

The usethis package is a package for automating the setup and building of R packages, while f£s provides
tools for creating, listing, and manipulating files. Now, we create a directory called smra inside a temporary
directory created by the tempdir command, and we save the path to this directory.

path_to_package <- path(tempdir(), 'smra')

Now, we create a list with all the information that we need to pass to the create_package command. This
information is put in the DESCRIPTION file inside the smra package directory.

fields <- 1list(Title = "Simple Moving/Rolling Average",

Version = "0.0.1",
“Authors@R™ = person(given = "Mark',

family = "Andrews",

role = c("aut", "cre"),

email = "mark.andrews@ntu.ac.uk"),
Description = "Calculate a simple moving/rolling average.',
License = 'MIT Licence',

LinkingTo = 'Rcpp',
Imports = 'Rcpp'
)

Most of the fields here are self-explanatory. Note that the Authors@R field uses the function person to define
the author the package. This author is assigned the roles aut (author) and cre (creator). Note also that
the LinkingTo and Imports fields, both with values Rcpp, are necessary to allow us to build and export the
Rcpp based functions. Now, we may execute the create_package command.

create_package (path_to_package,
fields = fields,
rstudio = F,
open = F)
#> Package: smra
#> Title: Simple Moving/Rolling Average
#> Version: 0.0.1
#> AuthorsOR (parsed):
#> * Mark Andrews <mark.andrews@ntu.ac.uk> [aut, cre]
#> Description: Calculate a simple moving/rolling average.
#> License: MIT Licence
#> Imports:
#> Rcpp
#> LinkingTo:
#> Rcpp
#> Encoding: UTF-8
#> LazyData: true
#> Roxygen: list(markdown = TRUE)
#> RoxygenNote: 7.1.1

In create_package, by setting rstudio = T, we set the directory to be an RStudio project, although this is
not strictly necessary. By setting open = F, we do not open the resulting RStudio project/package in a new
RStudio session.

At this point, the smra directory has two files, DESCRIPTION and NAMESPACE, and one empty directory named
R, which we can see with the dir_tree command.

dir_tree(path_to_package)
/tmp/Rtmp8rS1ij/smra

+-- DESCRIPTION

+-- NAMESPACE

\-- R

We now create an empty file code.cpp and put this in a new directory named src in the package, which we
will do using the file_create function from the fs package.

src_dir <- dir_create(path(path_to_package, 'src'))
file_create(path(src_dir, 'code.cpp'))

We will now put the following C++ code in this code. cpp file.

// code.cpp
NumericVector rolling mean(NumericVector x, int k = 1) {

// Declare outer loop counter

int i;

// Declare inner loop counter

int j;

// Declare vector length

int n = x.size();

// Declare inner loop summation variable
double total;

// Declare output vector

NumericVector y(n);

for (i = 0; i < n; i++) {
if (4 <k - 1{
y[i] = NumericVector::get_na();
} else {
total = 0;
for (j = 0; j < k; j++) {
total += x[i - jl;
}
y[i] = total/k;
}
}

return y;

}

This program calculates a length k¥ moving or rolling mean of a vector. Specifically, given a vector whose
values are x1,x2,...%; ... Ty, the length k£ moving average is vector 41,92 ...%; ...y, whose values are

k 1 k—1
j=1 7=0

if 4 > k and undefined otherwise. For example, if k = 5, for i > k,

Yi =

x| =

Ti+Ti—1+Ti—2+Ti—3+Ti—g
Yi = 5 .

To do this, we loop over all values of ¢ from 0 to n — 1 (remembering that C++ starts its index at 0), and for
values of ¢ < k — 1, we assign the NA value to y[i]. For all other values of i, we calculate the mean of x[1i]
and the k — 1 previous values. At the beginning, we declare the data types of all the variables in this program.
Note that the output of the function is of type NumericVector. We declare that y is a NumericVector of
length n, where n is the length of x, by the following statement.

// code.cpp
NumericVector y(n);

Before we compile this function, we add the following comments immediately before the function begins.

// code.cpp

//"' Simple moving average of a numeric vector

a

a

//"' @param x A numeric vector

//"' @param k The window length of the moving average
//"' @return A vector of the same length of

//" @export

// [[Rcpp: :export]]

NumericVector rolling mean(NumericVector x, int k = 1) {

These are, in fact, more than just normal code comments. Those preceded by //' will be parsed by roxygen2
to make the documentation for the resulting rolling_mean function. In addition, the //' @export statement
ensures that rolling_mean will be an exported function of the package we make. The roxygen2 documentation
functions will write export (rolling_mean) to the NAMESPACE file in the R package. In addition, the //
[[Rcpp: :export]] comment will ensure that the C++ function is exported to R.

In order to ensure that more necessary information is included in the NAMESPACE file, we create the following
file and place it in the R directory in the R package.

// smra-package.R

#' QuseDynLib smra, .registration = TRUE
#' @importFrom Rcpp sourceCpp

NULL

The file structure of the package is now as follows.

dir_tree(path_to_package)
/tmp/Rtmp8rS1ij/smra

+-— DESCRIPTION

+-- NAMESPACE

+-- R
| \-- smra-package.R
\-- src

\-- code.cpp

Now, we are ready to build the package. First, we document the package, which also ensures that the
necessary lines are added to NAMESPACE. We can do this with the devtools package’s document function.

library(devtools)
document (path_to_package)

We can load the package with load_all, which is roughly equivalent to installing and loading with the
normal library function.

load_all(path = path_to_package)
Now, we can use the rolling_mean function.

x <- rnorm(20)

rolling mean(x, k = 5)

#© [1] NA NA NA NA 0.99988573 0.92298972
#> [7] 0.49955783 -0.08995363 -0.03230148 0.17451006 0.38450327 0.69945225
#> [13] 0.99568605 1.06842425 0.62634885 0.38136451 0.55827531 0.16512014
#> [19] -0.20141630 -0.26458559

We can verify that this rolling mean calculating is correct by comparing it to the rollmean function from the
zoo package.

zoo::rollmean(x, k = 5, na.pad = T, align = 'right')

#> [1] NA NA NA NA 0.99988573 0.92298972
#> [7] 0.49955783 -0.08995363 -0.03230148 0.17451006 0.38450327 0.69945225
#> [13] 0.99568605 1.06842425 0.62634885 0.38136451 0.55827531 0.16512014
#> [19] -0.20141630 -0.26458559

Parallel processing in R

Parallel processing is arguably the defining feature of high performance computing. At the very least, it is
one of its defining features and one of its most important topics. Simply put, parallel processing is whenever
we simultaneously execute multiple programs in order perform some task. To do this, we need more than
one computing units (processing units) on our computer. In general, these units can be either cores on the
central processing unit (CPU) or on the graphics processing unit (GPU). Modern supercomputing and high
performance computing generally almost always uses a mixture of both CPUs and GPUs. However, although
most modern desktops and laptop machines usually have multicore CPUs, most do not have general purpose
GPUs, and so we will not consider GPU computing here.

The topic of parallel computing generally is a highly technical one, often focusing on relatively low level
programming concepts, the details of the hardware, and the algorithmic details of the task be carried out.
Here, we will avoid all of this complexity. We will focus exclusively on what are called embarrassingly parallel
problems. These are computing problems can be easily broken down into multiple independent parts. We will
also assume that we are working on a single computer (i.e., node), such as a laptop or desktop machine, rather
than on a cluster of multiple nodes. And we will focus on parallel computing using R itself, as opposed to the
parallelism that we can obtain using libraries such as OpenMP (Open Multi-Processing) or MPI (Message
Passing Interface) when programming with C/C++ and other fast level languages.

The parallel package

R provides many packages related to parallel computing. See the webpage https://cran.r-project.org/web/vi
ews/HighPerformanceComputing.html for a curated list of relevant packages. Here, we will focus exclusively
on the R parallel package. This package builds upon and incorporates two other packages: multicore and
snow (simple network of workstations). The principal way that parallel processing is done using parallel is
by using multiple new processes that are started by a command in R. These processes are known as workers
and the R session that starts them is known as the master. The communication between the master and
the workers can be done using sockets, and the code for doing this was developed by snow, or else by forks,
and the code for this was developed by multicore. Forks create copies of the master process, including
all its objects, and workers and the master processes share memory allocations Sockets are independent
processes to which information from and to the master must be explicitly copied. In both forks and sockets,
tasks are farmed out to the workers from the master using parallel version of “map” functionals, e.g. lapply,
purrr: :map, which we explored in Chapter 6. While there are many advantages to using forks, their key
disadvantage is that they are not available on Windows. For that reason, we will only consider sockets here.

The parallel package is pre-installed in R and is loaded with the usual 1ibrary command.
library(parallel)

We can use the detectCores function from parallel to list them number of available cores on our computer.
The option logical = FALSE will list only physical, rather than virtual, cores. It is advisable to always set
logical = FALSE and so report only physical cores as this in general list the maximum number of separate
processes that can be executed simultaneously. The machine on which I am currently working has two Xeon
Gold 6154 CPUs, each with 18 physical cores, and so there are 36 physical cores

detectCores(logical = F)
#> [1] 16

https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html

Using clusterCall, clusterApply etc

The parallel packages provides many functions for socket based execution of parallel tasks or farming out
tasks to workers. We will consider clusterCall, and clusterApply and related functions like parLapply,
parSapply, etc. These are similar to one another, and are representative of how other socket based parallel
functions in parallel work.

The clusterCall function calls the same function on each worker. As a very simple example, let us create a
function that returns the square of a given number.

square <- function(x) x~2

To apply this in parallel, first, we start a set of workers. We can specify as many workers as we wish.
Specifying more workers than there are cores will obviously not allow for all workers to occupy one whole
core. Usually, if specifying the maximum number of workers, we set it to the total number of cores minus one.
Assuming that the workers are involved in computationally intensive tasks, this allows one core free for other
tasks, like R or RStudio, running on your computer. For now, we will use just 4 cores. We do this using the
makeCluster command.

the_cluster <- makeCluster (4)

This command returns an object, which we name the_cluster here, and which we need to use in subsequent
commands. Now we call square with input argument 10 on each worker.

clusterCall(cl = the_cluster, square, 10)
#> [[1]]
#> [1] 100
#>

#> [[2]]
#> [1] 100
#>

#> [[3]]
#> [1] 100
#>

#> [[4]]
#> [1] 100

The clusterCall returns a list with 4 elements. Each element is the value returned by the function square
with argument 10 that was executed on each worker. We could also use clusterCall with anonymous
functions, as in the following example, where we calculate the cube of 10.

clusterCall(cl = the_cluster, function(x) x~3, 10)
#> [[1]]
#> [1] 1000
#>

#> [[2]]
#> [1] 1000
#>

#> [[3]]
#> [1] 1000
#>

#> [[4]]
#> [1] 1000

As another example, here we call rnorm with input argument 5, which determines the number of random
values.

clusterCall(cl = the_cluster, rnorm, 5)

#> [[1]1]

#> [1] 0.09633051 0.54456749 -0.22439985 -1.02967480 -0.39163237
#>

#> [[2]]

#> [1] -0.3597894 -0.7848778 -0.5617933 0.2901544 1.0833893

#>

#> [[3]]

#> [1] -0.4014709 0.2447361 -1.0787930 -0.5953200 -1.1920969

#>

#> [[4]]

#> [1] 0.5727435 -0.1223220 -0.8355434 -0.4987002 0.1683486

Usually, we need the workers to perform different tasks, and so calling the same function with the same
arguments is not usually what we what to do. To call the same function with different arguments, we can
use clusterApply and related function. In the following, we apply square to each element of vector of five
elements.

clusterApply(cl = the_cluster, x = c(2, 3, 5, 10), square)
#> [[11]
#> [1] 4
#>

#> [[2]]
#> [1] 9
#>

#> [[3]]
#> [1] 25
#>

#> [[4]]
#> [1] 100

With clusterApply, we can still use anonymous functions and we can also supply optional input arguments.

clusterApply(cl = the_cluster, x = c(2, 3, 5, 10), function(x, k) x"k, 3)
#> [[1]]
#> [1] 8
#>

#> [[2]]
#> [1] 27
#>

#> [[3]]
#> [1] 125
#>

#> [[4]]
#> [1] 1000

Very similar to clusterApply is parLapply, which is the parallel counterpart to base R’s 1apply. In lapply,
we supply a list, each element of which is applied to a function, and the result is returned as a new list.

lapply(list(x = 1, y = 2, z = 3), function(x) x72)
#> $x

#> [1] 1

#>

#> 3y

#> [1] 4

#>

$z

#> [1] 9

10

The parLapply uses an identical syntax but the the cluster being the first argument.

parLapply(cl = the_cluster, list(x =1, y = 2, z = 3), function(x) x~2)
#> $x

#> [1] 1

#>

#> 3y

#> [1] 4

#>

$z

#> [1] 9

Just as sapply can be used to simplify the output from lapply, we can use parSapply to simplify the output
of parLapply. For example, the following, the returned list is simplified as a vector.

parSapply(cl = the_cluster, list(x =1, y = 2, z = 3), function(x) x72)
#> X y z
#> 1 4 9

When we are finished with the parallel processing, we must shut down the cluster.

stopCluster (the_cluster)

Example 1: Bootstrapping

Bootstrapping, which have not covered in this book, is a means to obtaining a sampling distribution for an
estimator. We sample with replacement from the observed data, and draw a sample that is the same size
as the original. With each sample, we calculate the estimator. We repeat this process a large number of
times to obtain a disribution of the estimators. As example, let us consider the housing_df data set that we
considered in Chapter 8.

housing_df <- read_csv('data/housing.csv')

housing_df

#> # A tibble: 546 x 1
#> price

#> <dbl>

#> 1 42000

#> 2 38500

#> 3 49500

#> 4 60500

#> 5 61000

#> 6 66000

#> 7 66000

#> 8 69000

#> 9 83800

#> 10 88500

#> # ... with 536 more rows

This contains the prices of 546 houses in the city of Windsor, Ontario in 1987. We can sample the rows of
housing_df with replacement 546 using the sample function as follows,

n <- nrow(housing_df)
housing_df [sample(seq(n), n, replace = T),]
#> # A tibble: 546 x 1

#> price
#> <dbl>
#> 1 64500
#> 2 77500

11

#> 3 56000
#> 4 66000
#> 5 73000
#> 6 123500
#> 7 65000
#> 8 64500
#> 9 73500
#> 10 65000
#> # ... with 536 more rows

A function that can be used with any 1m model is as follows,

bootstrap_lm <- function(formula, data){
n <- nrow(data)
resampled_data <- datal[sample(seq(n), n, replace = T),]
Im(formula, data = resampled_data) %>%
coef ()
}

We can apply this to the housing_df data as follows.

bootstrap_lm(price ~ 1, data = housing_df)
#> (Intercept)
#> 69189.93

Note that this will produce just one bootstrap estimate. We need to reapply this a large number of times to
obtain our distribution of bootstrapped estimates. This can be done in parallel. For that, we first start a new
cluster of 4 workers.

the_cluster <- makeCluster(4)

Then, for code re-use, we create a function to perform a parallel distributed bootstrap_lm(price ~ 1,
data = housing_df) call a specified n times.

parallel_bootstrap <- function(n){
parLapply(the_cluster,
seq(n),
function(x) {bootstrap_lm(price ~ 1, data = housing_df)}
)
}

Were we to immediately try parallel_bootstrap, it would fail because the workers to do not have the
function bootstrap_lm or housing_df, which are both defined in the master process’s R environment. To
send bootstrap_lm and housing_df to the workers we must do the following.

clusterExport(cl = the_cluster, varlist = c('bootstrap_lm', 'housing df'))

Note that varlist is a vector of names, rather than the objects themselves. This is not sufficient,
however, because bootstrap_lm uses the pipe %>%, which must be loaded by a library call such as
library("tidyverse"). We can execute this package load function on all workers with clusterEvalQ as
follows.

clusterEvalQ(cl = the_cluster, library("tidyverse"))
Now, we may execute the parallel bootstrapping.
estimates <- parallel_bootstrap(10000)

The resulting estimates will be a list, which we can easily convert to a vector and then plot their histogram.
We could have also used parSapply instead parLapply to directly return a vector. The histogram of these
bootstrapped estimates are shown in Figure 1.

12

tibble(estimates = unlist(estimates)) %>%
ggplot(aes(x = estimates)) + geom_histogram(bins = 100, col = 'white')

65000 67500 70000 72500
estimates

300

o

200

o

count

1001

o

o
L

Figure 1: Bootstrap estimates of the mean of the prices in the housing_df data.

Let us now compare the time taken by parLapply to sample 10000 estimates and compare that to the time
take by lapply to do the same thing. For this timing, we will use the relatively crude timing procedure of
using Sys.time().

sequential_bootstrap <- function(n){
lapply(seq(n),
function(x) {bootstrap_lm(price ~ 1, data = housing_df)}
)
}

parallel version with 4 workers
start_time <- Sys.time()

estimates <- parallel_bootstrap(10000)
parallel_version <- Sys.time() - start_time

sequential version

start_time <- Sys.time()

estimates <- sequential_bootstrap(10000)
sequential_version <- Sys.time() - start_time

The times are as follows.

parallel_version

#> Time difference of 1.739148 secs
sequential_version

#> Time difference of 5.815549 secs

and so the parallel version is over 3.34 times as fast. However, it is interesting to note that this roughly linear
speed up, which is the ideal speed up in parallel processing, is not always going to happen. Consider, for
example, the case of obtaining just 10 bootstrap estimates.

parallel version with 4 workers
start_time <- Sys.time()

13

estimates <- parallel_bootstrap(10)
parallel_version <- Sys.time() - start_time

sequential version

start_time <- Sys.time()

estimates <- sequential_bootstrap(10)
sequential_version <- Sys.time() - start_time

The times are now as follows.

parallel_version

#> Time difference of 0.007232904 secs
sequential_version

#> Time difference of 0.00904274 secs

and so the sequential version is actually faster. This occurs because there is overhead in farming out the
tasks and communicating between the master and workers. For this reason, in general, it is always possible
for a parallel processing task to be slower than its sequential counterpart.

stopCluster (the_cluster)

Example 2: Parallel execution of mcmc models

Throughout this book, we have used MCMC based Bayesian models, mostly using brms, and in Chapter 17,
we cover Stan directly. In general, MCMC is very computational intensive. Although brms and Stan allow us
to easily execute the chains within each model in parallel, often we need to perform multiple separate brms
or Stan models. When working on a high end workstation or cluster, we would like to take advantage of all
the cores available to us to do this.

As an example, let us reconsider the affairs_df data set that we covered in Chapter 10.

affairs_df <- read_csv('data/affairs.csv')

affairs_df

#> # A tibble: 601 x 9

#> affairs gender age yearsmarried children religiousness education occupation
#> <dbl> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 0 male 37 10 no 3 18 7
#> 2 0 female 27 4 no 4 14 6
#> 3 0 female 32 15 yes 1 12 1
#> 4 0 male 57 15 yes 5 18 6
#> 5 0 male 22 0.75 no 2 17 6
#> 6 0 female 32 1.5 no 2 17 5
#> 7 0 female 22 0.75 no 2 12 1
#> 8 0 male 57 15 yes 2 14 4
#> 9 0 female 32 15 yes 4 16 1
#> 10 0 male 22 1.5 no 4 14 4
#> # ... with 591 more rows, and 1 more variable: rating <dbl>

This gives us the number of extramarital affairs (affairs) in the last 12 months by each of nrows (affairs_df)
people. We could model this variable using, amongst other things, a Poisson, or negative binomial, or by the
zero-inflated counterparts of these models. Likewise, we could use any combination of the eight predictor
variables that we have available to us. Each one of these models could around at least a minute to complete.
For many brms or Stan models, however, the running time could many hours or even days. Even though
each model can use up to four cores, with one core per chain, if we were working on a workstation or cluster,
we could execute many of these models simultaneously. For example, the workstation I am using now has 36
cores and so I could comfortably execute up to 8 models simultaneously, leaving a few hours free for other
tasks. This could be accomplished by opening 8 different RStudio sessions and running a different model in
each one, or running 8 different R scripts using Rscript in 8 different DOS or Unix terminals. It is, however,

14

much more convenient and manageable to have a single R script that creates 8 workers and farms out one of
the 8 models to each one.

Let us consider the following Poisson regression as a prototypical model.

M <- brm(affairs ~ gender + age + yearsmarried,
data = affairs_df,
cores 4,
iter = 25000,
family = poisson(link = 'log'))

Although not at all necessary for this model, we will use 25000 iterations per chain in order to resemble
for larger and hence slower model. The running time, including the C++ compilation, for this model is
approximately 35 seconds. Variants of this model might use either a different formula, or a different family
or both. We can make a function that accepts different formulas and families. We do this, for reasons that
will be soon clear, by creating a function that accepts one input argument that is a list with elements named
formula and family.

affairs_model <- function(input){
brm(input [['formula']],
data = affairs_df,
cores = 4,
iter = 25000,
family = input[['family']])
}

Now, we create a list of models specifications. Each element of this list is itself a list with two elements:
formula and family. The formula is a brmsformula specifying the outcome variable and predictors. The
family is one of the probability distribution families that brms accepts. Here, we specify six models, which
are each combination of two sets of predictors and three different families.

model_specs <- list(

Poisson model with 3 predictors
vl = list(formula = brmsformula(affairs ~ gender + age + yearsmarried),
family = poisson(link = 'log')),

Poisson model with 5 predictors
v2 = list(formula = brmsformula(affairs ~ gender + age + yearsmarried + religiousness + rating),
family = poisson(link = 'log')),

Negative binomial with 3 predictors
v3 = list(formula = brmsformula(affairs ~ gender + age + yearsmarried),
family = negbinomial(link = "log", link_shape = "log")),

Negative binomial with 5 predictors
v4 = list(formula = brmsformula(affairs ~ gender + age + yearsmarried + religiousness + rating),
family = negbinomial(link = "log", link_shape = "log")),

Zero-inflated Poisson with 3 predictors
vb = list(formula = brmsformula(affairs ~ gender + age + yearsmarried),
family = zero_inflated_poisson(link = "log", link_zi = "logit")),

Zero-inflated Poisson with 3 predictors

v6 = list(formula = brmsformula(affairs ~ gender + age + yearsmarried + religiousness + rating),
family = zero_inflated_poisson(link = "log", link_zi = "logit"))

15

)

Using parLapply or a related function, we can farm each one of these model specification out to a worker.
That worker will then compile the model and sample from it using four chains, with each chain on its own
core. Thus, when sampling, 6 x 4 cores will be in use. The 6 resulting models are then passed back to a list
named results. First, we start the cluster of 6 workers, and to each, we export the affairs_df data frame
and load the brms package.

the_cluster <- makeCluster(6)
clusterExport(cl = the_cluster, varlist = 'affairs_df')
clusterEvalQ(cl = the_cluster, library("brms"))

We then run the parLapply using model_specs as the list and affairs_model as the function to which each
element of the list will be applied. For comparison with the sequential model, we will time it.

start_time <- Sys.time()

results <- parLapply(cl = the_cluster,
model_specs,
affairs_model)

parallel_version <- Sys.time() - start_time

The running time is 79 seconds. For comparison, executing these models in a sequential functional like lapply
could be done as follows.

start_time <- Sys.time()
sequential_results <- lapply(model_specs, affairs_model)

sequential_version <- Sys.time() - start_time
The running time in this case is 217 seconds, and so it is about 2.7 times slower than the parallel version.

Now, all the results of these models are in the list results with names v1, v2, etc. We can use these models
completely as normal. For example, to extract the WAIC value of each model, we could create a helper
function get_waic and apply it to each element by results.

get_waic <- function(model){
waic(model)$estimates['waic', 'Estimate']

}

We will apply get_waic to results using a parallel functional like parLapply or parSapply, etc, but for
these models, it could also be done using, for example, lapply or purrr: :map.

waic_results <- parSapply(cl = the_cluster,
results,
get_waic)

waic_results
#> vl v2 v3 va vb v6
#> 3262.297 2910.549 1495.519 1471.374 1646.557 1617.750

stopCluster (the_cluster)

Spark

Apache Spark is a very popular framework for big data analysis. Put very simply, it is used for doing data
procesing and data analysis where both the data and the processing are distributed across multiple nodes on

16

a cluster. Spark is not an R based tool. It is written in the programming language Scala, which is derived
from Java. However, Spark can be used from R via packages like sparklyr. In this chapter, we will provide
a brief introduction to using sparklyr.

Installing sparklyr and Spark

The usual way of working with Spark is on a remote Spark cluster. When learning about Spark, especially
when using sparklyr, it is easier to use a local Spark installation on the computer on which you are working.
Using Spark locally often defeats the whole purpose of using Spark, which is to perform parallel and distributed
computer on large data sets that do on fit in the the RAM of a single node. Nonetheless, the basics of Spark
and sparkylr can be learned more easily this way.

We install sparklyr just as we would any R package using install.packages, and load it with library.
library(sparklyr)

Once installed and loaded, we can install Spark locally as follows.

spark_install()

Note that this requires Java to be installed on your machine. Now that we’ve installed Spark, we can create
a connection to it as follows.

connection <- spark_connect(master = 'local')

Were we to connect to a remote Spark cluster, we would still use spark_connect but with different arguments.
We can now verify the version of Spark we are using.

spark_version(connection)
#> [1] '2.4.3"

Copying data to Spark

Now, we need to get data to our local Spark cluster. Again, in practice, the data would be very large and
would reside on the cluster, and so would not copy it from our local device or R session to the cluster. For
the present example, our Spark installation begins empty and so we have no choice but to copy data there in
order to use Spark. There are no restrictions on the kind of data frame we can use. We will arbitrarily choose
the HI data frame from the Ecdat package. This gives the health insurance and hours worked by wives.

data(HI, package = 'Ecdat')
HI %>% as_tibble()
#> # A tibble: 22,272 x 13

#> whrswk hhi whi hhi2 education race hispanic experience kidslt6 kids618
#> <int> <fct> <fct> <fct> <ord> <fct> <fct> <dbl> <int> <int>
#> 1 0 no no no 13-15yea~ white no 13 2 1
#> 2 50 no yes no 13-15yea~ white no 24 0 1
#> 3 40 yes no yes 12years white no 43 0 0
#> 4 40 no yes yes 13-15yea~ white no 17 0 1
#> b 0 yes no yes 9-1lyears white no 44 .5 0 0
#> 6 40 yes yes yes 12years white no 32 0 0
#> 7 40 yes no yes 16years white no 14 0 0
#> 8 25 no no no 12years white no 1 1 0
#> 9 45 no yes no 16years white no 4 0 0
#> 10 30 no no yes 13-15yea~ white no 7 1 0
#> # ... with 22,262 more rows, and 3 more variables: husby <dbl>, region <fct>,

#> # wght <int>
We can copy HI to our Spark cluster with dplyr: :copy_to as follows.

hi_df <- copy_to(connection, HI)

17

We can verify that it was copied to the cluster by listing the tables there.

src_tbls(connection)
#> [1] llhill

The major class of hi_df is now tbl_spark, or a Spark based tibble or data-frame.

class(hi_df)
#> [1] "tbl_spark" "tbl_sql" "tbl_lazy" "tbl"

Although this appears just like a tibble in our local R session, this is just essentially a link to a data frame
stored on our cluster. By typing the name hi_df, we see the first few rows.

hi_df

#> # Source: spark<HI> [?7 x 13]

#> whrswk hhi whi hhi2 education race hispanic experience kidslt6 kids618
#> <int> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <int> <int>
#> 1 0 no no no 13-15yea~ white no 13 2 1
#> 2 50 no yes no 13-15yea~ white no 24 0 1
#> 3 40 yes no yes 12years white no 43 0 0
#> 4 40 no yes yes 13-15yea~ white no 17 0 1
#> 5 0 yes no yes 9-1lyears white no 44.5 0 0
#> 6 40 yes yes yes 12years white no 32 0 0
#> 7 40 yes no yes 16years white no 14 0 0
#> 8 25 no no no 12years white no 1 1 0
#> 9 45 no yes no l6years white no 4 0 0
#> 10 30 no no yes 13-15yea~ white no 7 1 0
#> # ... with more rows, and 3 more variables: husby <dbl>, region <chr>,

#> # wght <int>

Note that it does not list the number of rows, because it has not read them all, and just read the top. We
can, however, see more rows with the print function. For example, to see the first 100 rows, we would do
the following (we will omit the results).

print(hi_df, n = 100)

Data wrangling with Spark

We can do exploratory analysis of Spark based data frames using the dplyr verbs just like we would normally.
For example, we can select with select.

hi_df %>% select(whrswk, hhi, starts_with('kids'))
#> # Source: spark<?> [?77 x 4]
#> whrswk hhi kidslt6 kids618

#> <int> <chr> <int> <int>
#> 1 0 no 2 1
#> 2 50 no 0 1
#> 3 40 yes 0 0
#> 4 40 no 0 1
#> 5 0 yes 0 0
#> 6 40 yes 0 0
7 40 yes 0 0
#> 8 25 no 1 0
#> 9 45 no 0 0
#> 10 30 no 1 0
#> # ... with more rows

We can filter with filter.

18

hi_df %>% filter(education == '13-15years', hispanic == 'no')
#> # Source: spark<?> [??7 x 13]

#> whrswk hhi whi hhi2 education race hispanic experience kidslt6 kids618
#> <int> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <int> <int>
#> 1 0 no no no 13-15yea~ white no 13 2 1
#> 2 50 no yes no 13-15yea~ white no 24 0 1
#> 3 40 no yes yes 13-15yea~ white no 17 0 1
#> 4 30 no no yes 13-1b5yea~ white no 7 1 0
#> 5 45 no yes yes 13-15yea~ white no 16 0 2
#> 6 20 yes no yes 13-15yea~ white no 13 1 1
#> 7 10 yes no yes 13-15yea~ white no 24 0 3
#> 8 0 no no no 13-15yea~ white no 14 2 1
#> 9 40 no yes no 13-15yea~ white no 10 0 5
#> 10 22 yes no yes 13-15yea~ white no 15 2 0
#> # ... with more rows, and 3 more variables: husby <dbl>, region <chr>,

#> # wght <int>
We can modify the data frame with mutate. For example, here we select sum kids1t6 and kids618 as kids

hi_df %>% mutate(kids = kidslt6 + kids618) %>% select(starts_with('kids'))
#> # Source: spark<?> [?7 x 3]

#> kidslt6 kids618 kids

#> <int> <int> <int>

#> 1
#>
#>
#>
#>
#>
#>
#>

+H*

A\

© 00 N O O d W N -

Ok, OO O OO OoOoN

O O O O O - O
B O R, OO0OOFr ORFr W

=+
v
—
o

1 0
#> # ... with more rows

Other dplyr verbs can also be used, but not all the verbs work. For example, trying slice will raise the
error Slice is not supported in this version of sparklyr.

When dealing with large data frames, we often want to reduce them. For this, summarize and group_by are
vital.

hi_df %>%

group_by (education) %>%

summarise (whrswk = mean(whrswk, na.rm = T))
#> # Source: spark<?> [?77 x 2]
#> education whrswk

#> <chr> <dbl>
#> 1 <9years 12.5
#> 2 16years 30.3
#> 3 13-1b5years 27.4
#> 4 12years 24.4
#> 5 9-1lyears 16.9
#> 6 >16years 34.9

If we wish to save the results of an analysis, such as the summarise based results above, we can pipe them to
the function compute as follows.

19

hi_df %>%
group_by(education) %>%
summarise (whrswk = mean(whrswk, na.rm = T)) %>%
compute ('whrswk_summary')

#> # Source: spark<whrswk_summary> [?77 x 2]

#> education whrswk

#> <chr> <dbl>
#> 1 <9years 12.5
#> 2 16years 30.3
#> 3 13-1b5years 27.4
#> 4 12years 24.4
#> 5 9-1lyears 16.9
#> 6 >16years 34.9

Now whrswk_summary is another table on the Spark cluster.

src_tbls(connection)
#> [1] "hi" "whrswk_summary"

On the other hand, if we wanted to return this intermediate data frame to R, we’d use collect as in the
following example.

whrswk_summary_df <- hi_df %>’
group_by (education) %>
summarise (whrswk = mean(whrswk, na.rm = T)) %>%
collect()

We see that whrswk is just a regular tibble.

class(whrswk_summary_df)
#> [1] "tbl_df" "tbl" "data.frame"

In sparklyr, there are a number of functions that are similar to mutate in that they can be used to create
new variables. These are primarily intended to produce data for use with machine learning methods. In the
context, of machine learning, predictor variables for use in predictive models are often referred to a “features”.
Hence, these variable creation or transformation function often named ft_<verb>, with ft for feature. For
example, if we want to discretize a continuous variable according to the range of values it is in, similar to R’s
cut function, we could use ft_bucketizer as in the following example.

hi_df %>%
ft_bucketizer("whrswk", "whrswk_cat", splits = c(0, 10, 30, 50, 70, Inf)) %>%
select(starts_with('whrs'))

#> # Source: spark<?> [?77 x 2]

#> whrswk whrswk_cat
#> <int> <dbl>
#> 1 0 0
#> 2 50 3
#> 3 40 2
#> 4 40 2
#> b5 0 0
#> 6 40 2
#> 7 40 2
#> 8 25 1
#> 9 45 2
#> 10 30 2
#> # ... with more rows

Note the ft_bucketizer function, like all £t_ function, requires the name of the variable to which the

20

transformation is appled, and the name of the variable created, to be character strings.

As another example, if we want to convert a categorical variable into a type of dummy code known as
a one-hot code, where each value of the variable is represented by a 1 in an vector of zeros, we can use
ft_one_hot_encoder. This only applies to numerical variables, so to apply it to a character vector, we’'d
first transform the character vector to

hi_df

h>%

ft_string_indexer('region', 'iregion') %>%
ft_one_hot_encoder('iregion', 'one_hot_region') %>%
select(region, one_hot_region)

#> # Source: spark<?> [?77 x 2]

one_hot_region

<list>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#> 10

© 00 ~NO O WN =~

#> # ...

region

<chr>
northcentral
northcentral
northcentral
northcentral
northcentral
northcentral
northcentral
northcentral
northcentral
northcentral
with more

<dbl
<dbl
<dbl
<dbl
<dbl
<dbl
<dbl
<dbl
<dbl
<dbl
rows

[31>
[3]1>
[3]1>
[31>
[31>
[31>
[3]>
[31>
[31>
[31>

Clearly, the one_hot_region is a list column. To see what it has done, we can collect the results using
collect, and using unnest_wider (not available on Spark) to unnest the list column into new variables.

regions_df <- hi_df %>%
ft_string_indexer('region', 'iregion') %>%
ft_one_hot_encoder('iregion', 'one_hot_region') %>%
select(region, one_hot_region) %>%

col

lect()

regions_df ¥>% unnest_wider (one_hot_region) %>}, distinct()

#> #
#>
#>
#>
#>
#>
#>

DWW N -

A tibble: 4 x
region

<chr>
northcentral
other

south

west

4
.1 20 ...3
<dbl> <dbl> <dbl>
0 1 0
0 0 1
1 0 0
0 0 0

Machine learning using Spark

Spark provides many machine learning tools. As mentioned in Chapter 1, machine learning is related to
statistical modelling, which is the major topic of this book, though it is not something that we have directly
addressed. However, some tools and methods used in machine learning are identical to widely used traditional
statistical modelling methods, even if there sometimes is some change in terminology. One example of this
is logistic regression, which we covered in Chapter 10. Logistic regression is also a widely used in machine
learning, particularly for predictive modelling.

In R, a logistic regression predicting whi, whether a wife has health insurance through her job, from husby,
husband’s income, in the HI data set is accomplished as follows.

M <- glm(whi ~ husby, data =

HI, family = binomial(link = 'logit'))

21

Using sparklyr, we can do the following.
M_spark <- ml_logistic_regression(hi_df, whi ~ husby)
What is returned by the m1_logistic_regression output are the coefficients.

M_spark

#> Formula: whi ~ husby

#>

#> Coefficients:

#> (Intercept) husby
#> -0.437475437 -0.003021714

We can verify that these match those returned by glm.

coefficients (M)
#> (Intercept) husby
#> -0.437475397 -0.003021715

Spark will not provide measures of uncertainty in the estimators, e.g. standard errors, from which we can
obtain p-values and confidence intervals on coefficients. Likewise, other quantities like the log of the likelihood
function or deviance are not provided, so that we can not easily do model comparison based on log likelihood
ratio tests. However, it is standard in machine learning to asses model fit using out of sample predictive
performance by dividing the data into so-called “training” and “test” tests, fitting the model with the training
set, and testing its performance on the test set. In the following, we split the data into a training set, which
is 90%, and a test set, which is 10%.

partitions <- hi_df %>%
sdf_random_split(training = 0.9, test = 0.1)
M_spark <- partitions$training %>%
ml_logistic_regression(whi ~ husby)
We can now test how well the model predicts the test set using ml_binary_classification_evaluator.
predictions <- ml_predict(M_spark, partitions$test)
ml_binary_classification_evaluator (predictions)
#> [1] 0.5248326

The value that is returned here is the area under the ROC curve. This has multiple interpretations, but
ultimately is based on the model’s true positive rate (correct classification of positive instances, i.e. where
outcome variable is equal to 1) versus false positive rate (misclassification of a negative instance). A value of
0.5 indicates the logistic regression is at chance level.

References

Eddelbuettel, D. 2013. Seamless R and C++ Integration with Repp. Use R! Springer New York.

Eddelbuettel, Dirk, and James Joseph Balamuta. 2017. “Extending R with C++: A Brief Introduction to
Repp?” Peerd Preprints 5 (August).

Wickham, Hadley. 2019. Advanced R. 2nd ed. Chapman; Hall/CRC.

22

	Introduction
	Using C++ code with Rcpp
	Using Rcpp interactively
	Using Rcpp code in R packages

	Parallel processing in R
	The parallel package
	Using clusterCall, clusterApply etc
	Example 1: Bootstrapping
	Example 2: Parallel execution of models

	Spark
	Installing sparklyr and Spark
	Copying data to Spark
	Data wrangling with Spark
	Machine learning using Spark

	References

