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Introduction
In Chapter 8 and subsequent chapters, we described how the aim of Bayesian inference is to infer the posterior
distribution of the assumed statistical model’s parameters, which we can write as P(θ|D), where θ is the set of
unknown parameters and D is the observed data. In general, in all but a small number of cases, this posterior
distribution, which we can think of as simply as a function over a (often very high) dimensional space, does
not have an analytical description. In other words, in general, there is no formula that will give quantities
that we seek such as the posterior’s mean, standard deviation, high posterior density interval, posterior
predictive distribution, etc. However, all of these quantities are expectations of the posterior distribution,
which we can express as

〈g(θ)〉 =
∫
g(θ)P(θ|D)dθ,

where g(θ) is some function of the parameters θ. We can approximate these expectations using the Monte
Carlo integration method, which is where we draw samples from P(θ|D) and then calculate the arithmetic
mean of the function g applied to each one:

〈g(θ)〉 ≈ 1
n

n∑
i=1

g(θ̃i),

where θ̃1, θ̃2 . . . θ̃n are n samples drawn drawn from P(θ|D).

In Chapter 8, we also saw that Markov Chain Monte Carlo (mcmc) methods, which include techniques such
as the Metropolis (or, more general, Metropolis-Hastings) sampler, the Gibbs sampler, and the Hamiltonian
Monte Carlo variant of the Metropolis sampler are algorithms from drawing samples from high dimensional
probability distributions that can be applied very generally. As useful and as general as these mcmc samplers
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are, they nonetheless are relatively arduous to implement in practice. Because samplers are computationally
very intensive, they need to be implemented in lower level programming languages such as C/C++ or
Fortran. Even when we have knowledge and experience with these languages, writing code in these language
is more difficult, time consuming, and error prone than writing code in, say, R. In addition, there is often
a lot of mathematical details about the models that we need to work out and then implement in code.
For example, we must mathematically work out the likelihood function, which for large models may be
relatively complex, and then we must implement this in code. For some samplers, some as Gibbs samplers or
Hamiltonian Monte Carlo, further mathematical details, such as conditional distributions or the derivative of
the posterior distribution must be worked out and implemented. We may then have to fine tune the samplers
to maximize their efficiency. In addition, every time we change major aspects of our model, we must often
rewrite substantial portions of our code. Overall, compared to any code covered in this book, these are major
programming tasks that require time and effort that we simply may not be able to afford.

The aim of a probabilistic programming language (ppl) is to automate the implementation of the mcmc
sampler. With a ppl, all we need do is specify our probabilistic model, including the priors, in a high level
programming language. The sampler is then automatically derived and compiled and executed for us, and
samples are then returned to us. The saving in terms of our time and effort can be remarkable. What might
have taken days or even weeks of relatively tedious and error prone programming in C++ or Fortran, can
now be accomplished in minutes by writing high level code.

In this chapter, we cover the Stan ppl, which is named after the Polish American Mathematician Stanislaw
Ulam who was one of the inventors of the Monte Carlo in the late 1940’s. The first stable release of
Stan was in 2012, and it has grown steadily in popularity since then. Now it is arguably the dominant
probabilistic programming language for Bayesian data analysis in statistics. Here, we will attempt to provide
a self-contained tutorial introduction to Stan and how it can be used in R by using rstan.

Univariate models
Let us begin by considering some simple models, each one being defined essentially by probability distributions
over a single observed variable.

Loaded die model
Let us begin with a very simple one parameter problem. Let us imagine that we have a die that is loaded to
make an outcome of 6 more likely than other outcome. We throw this die N = 250 times and record the
resulting face on each occasion. Simulated data of this kind is available in the following data set.

dice_df <- read_csv('data/loaded_dice.csv')

We can use table to count the number of outcomes of each face, and clearly there are more cases of 6 than
other outcomes.

dice_df %>% table()
## .
## 1 2 3 4 5 6
## 31 38 35 42 31 73

We can recode each outcome as a “six” or “not-six” binary outcome.

dice_df %<>%
mutate(is_six = ifelse(outcome == 6, 1, 0))

dice_df
## # A tibble: 250 x 2
## outcome is_six
## <dbl> <dbl>
## 1 6 1
## 2 1 0
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## 3 6 1
## 4 2 0
## 5 1 0
## 6 4 0
## 7 5 0
## 8 6 1
## 9 4 0
## 10 1 0
## # ... with 240 more rows

Bernoulli model

If we denote these binary outcomes as y1, y2 . . . yn, with each yi ∈ {0, 1}, an assuming that there is a fixed
probability θ that each yi = 1, then our model of this data is as follows.

yi ∼ Bernoulli(θ), for i ∈ 1, 2 . . . n.

A Bayesian model places a prior probability distribution over θ. When using a mcmc methods generally,
especially with a ppl like Stan, we have practically endless choices for this prior. However, it must be a
probability distribution over the real interval [0, 1], and so an easy choice would be a Beta distribution with
hyperparameters α and β, which we will assume are known. Thus, the complete Bayesian model is as follows.

yi ∼ Bernoulli(θ), for i ∈ 1, 2 . . . n,
θ ∼ Beta(α, β).

To implement this model is Stan, we first extract out the is_six variable as a standalone vector, which we
will name y, and record the length of this vector as N.

y <- dice_df %>% pull(is_six)
N <- length(y)

Given that we’ve assumed the alpha and beta hyperparameters of the Beta distribution are known, we will
set them to be both equal to 1, which gives us a uniform prior distribution over θ.

alpha <- 1.0
beta <- 1.0

The four variables y, N, alpha, and beta are the data that we will send to Stan, and to do so, we must put
them into a list.

dice_data <- list(y = y,
N = N,
alpha = alpha,
beta = beta)

The Stan implementation of this model is written in an external file, namely loaded_dice.stan.

// loaded_dice.stan
data {

int<lower=1> N;
int<lower=0, upper=1> y[N];
real<lower=0> alpha;
real<lower=0> beta;

}

parameters {
real<lower=0, upper=1> theta;

3



}

model {
theta ~ beta(alpha, beta);
y ~ bernoulli(theta);

}

We notice that in this Stan program, as with most Stan programs, we have multiple code blocks, specifically
data, parameters, and model. The data block defines the input data.

data {
int<lower=1> N;
int<lower=0, upper=1> y[N];
real<lower=0> alpha;
real<lower=0> beta;

}

Notice that we must not only declare the names of the variables that we will be passing in to the program as
data, but we must also declare their size and type. For example, we declare than N is a positive integer, that
y is a vector of N integers which are bounded between 0 and 1, and so y is a binary vector, and alpha and
beta are declared as non-negative real numbers. The parameters block declares the (free) parameters of the
model.

parameters {
real<lower=0, upper=1> theta;

}

In this example, we have just one parameter, theta, which corresponds to θ in the above mathematical
description. This has a real value bounded between 0 and 1. The next block is model and is where we define
the model itself.

model {
theta ~ beta(alpha, beta);
y ~ bernoulli(theta);

}

This code corresponds almost perfectly to the mathematical description of the model. First, we state that
theta is distributed as a Beta distribution with hyperparameters alpha and beta. Next, we state that each
element of y is distributed as a Bernoulli distribution with parameter theta. Here, we are using vectorized
notation. In other words, the statement

y ~ bernoulli(theta);

is equivalent to

for (i in 1:N){
y[i] ~ bernoulli(theta);

}

While the second form maps on identically to the mathematical description, it is less concise notation and
also less efficient.

We can execute this Stan program in R via commands provided by the rstan package.

library(rstan)
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It should be noted, however, that Stan is a program that is completely independent of R, and can be
interfaced with many other programming languages and environments such as Python, Matlab, Stata, Julia,
Mathematica, Scala, and others. The following command from the rstan package will compile a sampler
based on the specifications in loaded_dice.stan and the data in dice_data, and then draw samples from it.

M_dice <- stan(file = 'loaded_dice.stan',
data = dice_data)

Typing the name M_dice gives us the following output.

M_dice
## Inference for Stan model: loaded_dice.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## theta 0.29 0.00 0.03 0.24 0.27 0.29 0.31 0.35 1397 1
## lp__ -153.09 0.02 0.75 -155.30 -153.24 -152.80 -152.61 -152.56 1458 1
##
## Samples were drawn using NUTS(diag_e) at Sun May 2 20:06:13 2021.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

There we see output that is similar to that of a brm based model, which of course is another interface to Stan.
The number of chains, total number of iterations, and number of warmup iterations, are all presented at the
top of this output. In the summary of the samples themselves, we are given information concerning theta,
which is our one unknown variable. From this, we have the mean, the standard deviation, and quantiles
of the posterior distribution’s samples. In addition, we have the Rhat convergence diagnostic, the effective
number of samples n_eff. The se_mean is the standard deviation divided by the square root of the n_eff.
As we can see, in addition to the information concerning theta, we have the same information for lp__. This
the logarithm of the (unnormalized) posterior density evaluated at the posterior samples of theta. This
information is not often of direct interest in itself but is used in the calculation of various model fit statistics.

If we apply the generic summary command to M_dice, we are given a list with two objects: summary and
c_summary.

summary(M_dice) %>% class()
## [1] "list"
summary(M_dice) %>% names()
## [1] "summary" "c_summary"

The summary object in this list is a matrix that summarizes the samples from all chains together. The
c_summary is a multidimensional array that gives a separate summary for each chain. With the main summary
command, we can pass in a vector of parameters using the keyword pars and a vector of quantiles using
the keyword probs. For example, to get the 2.5th and 97.5th percentile values of theta, and obtain these
summaries for all chains together, we can do the following.

summary(M_dice, pars = 'theta', probs = c(0.025, 0.975))$summary
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## theta 0.2929358 0.0007865121 0.02939633 0.2359161 0.3541264 1396.933 1.002714

For convenience, we can create a custom function stan_summary to return the summary matrix as a tibble.

stan_summary <- function(stan_model, pars, probs = c(0.025, 0.975)){
summary(stan_model, pars = pars, probs = probs)$summary %>%

as_tibble(rownames = 'par')
}
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stan_summary(M_dice, pars = 'theta')
## # A tibble: 1 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 theta 0.293 0.000787 0.0294 0.236 0.354 1397. 1.00

Binomial model

Now let us consider a variant on the Bernoulli model for the loaded die. Because each of the n throws of the
die and hence each six or not-six binary outcome is independent of every other and dependent only the value
of θ, the mathematical model defined above is also identical to the following binomial model.

m ∼ Binomial(n, θ),
θ ∼ Beta(α, β),

where m is the total number of observations where the binary outcome was equal to six. A Stan program for
this model is in loaded_dice_binomial.stan.

// loaded_dice_binomial.stan
data {

int<lower=1> N;
int<lower=1, upper=N> m;
real<lower=0> alpha;
real<lower=0> beta;

}

parameters {
real<lower=0, upper=1> theta;

}

model {
theta ~ beta(alpha, beta);
m ~ binomial(N, theta);

}

As we can see, in the model block, we now have the line

m ~ binomial(N, theta);

rather than this line from the previous Stan program

y ~ bernoulli(theta);

As such, we no longer need to pass in y as data but need to pass in m = sum(y) instead. The value of m
must be bounded between 1 and N, and hence we also include the following new line, which replaces the line
declaring y.

int<lower=1, upper=N> m;

We then call the model as before.

M_dice_2 <- stan('loaded_dice_binomial.stan',
data = list(m = sum(y),

N = length(y),
alpha = alpha,
beta = beta)

)
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The summary results are almost identical to those of the Bernoulli model.

stan_summary(M_dice_2, pars = 'theta')
## # A tibble: 1 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 theta 0.295 0.000741 0.0283 0.242 0.353 1457. 1.00

Logistic Bernoulli model

Another variant on the Bernoulli model above is the following logit model.

yi ∼ Bernoulli(θ), for i ∈ 1, 2 . . . n,

log
(

θ

1− θ

)
= µ, µ ∼ N(0, σ2).

Here, the prior is a normal distribution, with a zero mean and variance of σ2, over the log odds of θ. This is
simply an alternative prior over θ that is known as logit normal distribution. Again, we will assume that σ is
known. Setting σ = 1.0 gives a relatively diffuse prior over θ, albeit one that is unimodal and centered at
θ = 0.5. See Figure 1 for an illustration of this distribution.
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Figure 1: A logit-normal prior over θ whose hyperparameters are µ = 0 and σ = 1.

The logit-normal based model is defined in the loaded_dice_logit.stan file.

// loaded_dice_logit.stan
data {

int<lower=1> N;
int<lower=0, upper=1> y[N];
real<lower=0> sigma;

}

parameters {
real mu;

}

model {
mu ~ normal(0, sigma);
y ~ bernoulli_logit(mu);

}
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generated quantities{
real<lower=0, upper=1> theta;
theta = inv_logit(mu);

}

In this program, we use the bernoulli_logit probability distribution that takes the normally distributed
variable mu as a parameter. Given that we want to view samples from theta instead of, or at least in addition
to, those of mu, we include the following generated quantities code block.

generated quantities{
real<lower=0, upper=1> theta;
theta = inv_logit(mu);

}

We can compile, execute, and draw samples from this program using rstan::stan as usual.

dice_data_3 <- list(y = y, N = N, sigma = 1)
M_dice_3 <- stan('loaded_dice_logit2.stan',

data = dice_data_3)

The summary results are almost identical to those of the Bernoulli model.

stan_summary(M_dice_3, pars = c('mu', 'theta'))
## # A tibble: 2 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 mu -0.867 0.00381 0.138 -1.14 -0.595 1305. 1.00
## 2 theta 0.297 0.000791 0.0286 0.242 0.355 1309. 1.00

Clearly, the posterior distribution over theta is practically identical in this model than in the model with the
Beta prior.

Normal models
Now let us consider models where the observed variable is assumed to be normally distributed. In the
following data set, we have data concerning mathematical achievement scores in a sample of US university
students.

math_df <- read_csv('data/MathPlacement.csv')

A histogram for this data is shown in the mathematical SAT (Scholastic Aptitude Test) (SATM) scores is
shown in Figure 2.

math_df %>%
ggplot(aes(x = SATM)) +
geom_histogram(binwidth = 2, col='white')

Clearly, this data is unimodal and roughly bell-shaped but also with a negative skew. Despite is lack of
symmetry, a simple and almost default model of this data would be as follows.

yi ∼ N(µ, σ2), for i ∈ 1 . . . n,

where yi is the maths SAT score of student i and where there are n students in total. Obviously, we have two
unknowns, µ and σ, and so in a Bayesian model, we first put priors over these two variables. As with the
previous examples above, we have an almost endless variety of priors to use in this case. Given the simplicity
of the model, and the fact that we have 1236 observations, excluding missing values, any prior that is not
extremely precise will be dominated by the likelihood function when determining the posterior distribution,
and thus most common choices are not likely to make much practical differences to the posterior distribution.
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Figure 2: Histogram of mathematical SAT scores in a sample of student in a US university.

Common choices for a prior on the µ parameter of the normal distribution is another normal distribution.
These can be set to have a relatively high value for the variance (hyper)-parameter to get a vague and hence
weakly informative prior. For the prior over σ, Gelman and others (2006) generally recommends heavy
tailed distributions over the positive real values such as a half-Cauchy or half-t distribution. Following these
suggestions, our Bayesian model becomes, for example:

yi ∼ N(µ, σ2), for i ∈ 1 . . . n,
µ ∼ N(ν, τ2), σ ∼ Student+(κ, φ, ω),

where Student+ is the upper half of the (nonstandard) Student t-distribution centered at φ, with scale
parameter ω, and with degrees of freedom κ. For this choice of prior, we therefore have in total 5 hyper-
parameters ν, τ , φ, ω and κ.

A Stan program implementing this model is in the file normal.stan.

// normal.stan
data {

int<lower=0> N;
real nu;
real<lower=0> tau;
real phi;
real<lower=0> omega;
int<lower=0> kappa;
vector[N] y;

}

parameters {
real mu;
real<lower=0> sigma;

}

model {
sigma ~ student_t(kappa, phi, omega);
mu ~ normal(nu, tau);
y ~ normal(mu, sigma);

}

This program is much the same as before with its three main code blocks. One important general feature
of Stan not seen before is that the truncated Student t-distribution is defined by the general Student t-
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distribution. However, because sigma is defined as having only positive values, the resulting prior distribution
over sigma is the half t-distribution. In general, regardless of the prior distribution that we use, it will be
truncated based on the variable’s defined limits.

We can run this program with rstan::stan as follows.

math_data <- list(y = y, N = N, nu = 50, tau = 25, phi = 0, omega = 10, kappa = 5)
M_math <- stan('normal.stan', data = math_data)

As we can see, we have the hyperparameters for the normal distribution on mu to be nu = 50 and tau = 25.
This places a relatively diffuse normal distribution over µ with its center at 50 and with 95% of its mass from
approximately 0 to 100. The half Student-t distribution has its lower bound at 0, and with its scale being
omega = 10, this entails that 95% of its mass extends as far as 30.

As before, we can view the summary of the results with stan_summary.

stan_summary(M_math, pars = c('mu', 'sigma'))
## # A tibble: 2 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 mu 62.6 0.00371 0.212 62.2 63.0 3257. 1.00
## 2 sigma 7.50 0.00259 0.151 7.22 7.81 3384. 1.00

Clearly, this reveals a very precise estimates of both the mean mu and standard deviation sigma of the normal
distribution of maths SAT scores.

Regression models
Normal linear regression models are extensions of the normal distribution based model just described in the
previous section.

Simple linear regression
As an example, using the math_df data, we will model how the score on a math placement exam PlcmtScore
varies as a function of SATM. A scatterplot of this data is shown in Figure 3.
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Figure 3: A scatterplot of scores on a mathematics placement exam against maths SAT scores.
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Denoting the PlcmtScore by y and SATM by x, the model can be written as follows.

for i ∈ 1 . . . n yi ∼ N(µi, σ
2), µi = β0 + β1xi.

There are now three parameters in the model: β0, β1, σ. We will place normal priors on β0 and β1, and half
t-distribution on σ. As such the full Bayesian model is as follows.

yi ∼ N(µi, σ
2), µi = β0 + β1xi,

β0 ∼ N(ν0, τ
2
0 ), β1 ∼ N(ν1, τ

2
1 ), σ ∼ Student+(κ, φ, ω)

The Stan code for this model is in normallinear.stan.

// normlinear.stan
data {

int<lower=0> N;
vector[N] x;
vector[N] y;

// hyperparameters
real<lower=0> tau;
real<lower=0> omega;
int<lower=0> kappa;

}

parameters {
real beta_0;
real beta_1;
real<lower=0> sigma;

}

model {
// priors
sigma ~ student_t(kappa, 0, omega);
beta_0 ~ normal(0, tau);
beta_1 ~ normal(0, tau);
// data model
y ~ normal(beta_0 + beta_1 * x, sigma);

}

For this example, we will choose the hyperparameters to lead to effectively uninformative priors on β0 and β1.
Specifically, the normal distributions will be centered on zero, i.e. ν0 = ν1 = 0, and will be sufficiently wide,
i.e., τ0 = τ1 = 50, so as to be effectively uniform over all practically possible values for β0 and β1. For the
prior on σ, as above, we will use the upper half of Student’s t-distribution centered at 0 and with a relatively
low degrees of freedom and with a scale ω equal to the mad of the outcome variable y. If we place the x and
y data vectors and the values of the hyperparameters in the list math_data_2, we can call the Stan program
as using rstan::stan as we did above.

math_df_2 <- math_df %>%
select(SATM, PlcmtScore) %>%
na.omit()

x <- pull(math_df_2, SATM)
y <- pull(math_df_2, PlcmtScore)

math_data_2 <- list(
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x = x,
y = y,
N = length(x),
tau = 50, omega = mad(y), kappa = 3

)

M_math_2 <- stan('normlinear.stan', data = math_data_2)

As before, we can view the results with stan_summary

stan_summary(M_math_2, pars = c('beta_0', 'beta_1', 'sigma'))
## # A tibble: 3 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 beta_0 -23.6 0.0550 1.83 -27.2 -20.0 1109. 1.00
## 2 beta_1 0.913 0.000878 0.0291 0.857 0.970 1099. 1.00
## 3 sigma 7.62 0.00383 0.154 7.32 7.92 1608. 1.00

Multiple regression and categorical predictors
In general, we may have any number of predictors in a regression model. As we have seen previously, if any
of these predictors are categorical variables, each one is recoded using a binary dummy code. For example, a
categorical variable with L distinct levels can be recoded using L − 1 binary variables. The values of the
predictors for all observations can be arranged as an n×K + 1 matrix X, known as the design matrix, where
n is the number of observations, K is the total final number of predictors after all categorical predictors have
been recoded, and the first column of X is a vector of n 1’s. Therefore, in general, any normal linear model
can be described as follows.

~y ∼ N(~µ, σ2), ~µ = X~β,

where ~y is the n dimensional vector of all observations of the outcome variable, ~β is a K + 1 dimensional
vector of coefficients, and the first value of ~β is the intercept term. A full Bayesian version of this model is
implemented in the program mlreg.stan.

// mlreg.stan
data {

int<lower=0> N;
int<lower=0> K;
matrix[N, K+1] X;
vector[N] y;

// hyper parameters
real<lower=0> tau;
real<lower=0> omega;
int<lower=0> kappa;

}

parameters {
vector[K+1] beta;
real<lower=0> sigma;

}

transformed parameters {
vector[N] mu;
mu = X * beta;

}
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model {
// priors
beta ~ normal(0.0, tau);
sigma ~ student_t(kappa, 0, omega);

// data model
y ~ normal(mu, sigma);

}

In this program, we have a normal prior on ~β and a half Student t-distribution prior on σ as before. Note
that the prior over ~β is a specified in the Stan code as follows.

beta ~ normal(0.0, tau);

This places the same N(0, τ2) prior over each element of ~β. Note also that this program has a new command
block that we have not used previously: transformed parameters. This is used to create parameters that
are transformations of the original ones. Here, we have used it for the µ vector, which is a deterministic
function of β and X.

To use this Stan program, the base R command model.matrix and the corresponding model_matrix command
from the modelr package can used to create the design matrix X. As an example, in the following data set,
we have the height, weight, gender, and race, amongst other variables, for a set of over 6000 individuals.

weight_df <- read_csv('data/weight.csv')
weight_df
## # A tibble: 6,068 x 7
## subjectid gender height weight handedness age race
## <dbl> <chr> <dbl> <dbl> <chr> <dbl> <chr>
## 1 10027 male 178. 81.5 right 41 white
## 2 10032 male 170. 72.6 left 35 white
## 3 10033 male 174. 92.9 left 42 black
## 4 10092 male 166. 79.4 right 31 white
## 5 10093 male 191. 94.6 right 21 black
## 6 10115 male 172 80.2 right 39 white
## 7 10117 male 181 116. right 32 black
## 8 10237 male 185 95.4 right 23 white
## 9 10242 male 178. 99.5 right 36 white
## 10 10244 male 181. 70.2 left 23 white
## # ... with 6,058 more rows

The gender variable has two values, male and female. The race variable has 7 values, of which white, black,
hispanic make up around 95% of cases, and so we will limit our focus to them.

weight_df %<>% filter(race %in% c('black', 'white', 'hispanic'))

The design matrix to predict weight from height, gender, and race is

library(modelr)
model_matrix(weight_df, weight ~ height + gender + race)
## # A tibble: 5,769 x 5
## `(Intercept)` height gendermale racehispanic racewhite
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 178. 1 0 1
## 2 1 170. 1 0 1
## 3 1 174. 1 0 0
## 4 1 166. 1 0 1
## 5 1 191. 1 0 0
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## 6 1 172 1 0 1
## 7 1 181 1 0 0
## 8 1 185 1 0 1
## 9 1 178. 1 0 1
## 10 1 181. 1 0 1
## # ... with 5,759 more rows

Note that here, the gender variable has been coded with a single binary dummy code as follows.

female 0
male 1

On the other hand, the race variable has been coded by the following dummy code with two binary variables.

black 0 0
hispanic 1 0
white 0 1

The design matrix X and outcome vector ~y can now be obtained simply as follows.

X <- model_matrix(weight_df, weight ~ height + gender + race) %>%
as.matrix()

y <- pull(weight_df, weight)

With this, the data list can be set up as follows.

weight_data <- list(
X = X,
y = y,
N = length(y),
K = ncol(X) - 1,
tau = 100, kappa = 3, omega = mad(y)

)

We may then execute the Stan program with stan.

M_weight <- stan('mlreg.stan', data = weight_data)

We may view the summary of the posterior samples for ~β and σ using stan_summary.

stan_summary(M_weight, pars = c('beta', 'sigma'))
## # A tibble: 6 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 beta[1] -85.9 0.106 3.85 -93.6 -78.3 1316. 1.00
## 2 beta[2] 0.952 0.000649 0.0235 0.906 0.998 1307. 1.00
## 3 beta[3] 6.08 0.0116 0.463 5.18 6.98 1600. 1.00
## 4 beta[4] -0.427 0.0119 0.563 -1.54 0.671 2228. 1.00
## 5 beta[5] -2.30 0.00814 0.390 -3.06 -1.53 2300. 0.999
## 6 sigma 11.6 0.00193 0.106 11.4 11.8 3032. 1.00

Generalized linear models
Extending the multiple linear regression example just described to a generalized linear model is very
straightforward. Just as in the case of linear models, in generalized linear models, our predictor variables,
including categorical predictor variables that have been recoded using a dummy binary code, can be represented
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as K + 1 design matrix X. If our outcome variable vector ~y is a binary vector, a binary logistic regression
model of this data would be as follows.

~y ∼ Bernoulli(~θ), logit(~θ) = X~β.

On the other hand, if ~y is a vector of counts, we could use the following Poisson regression model for this
data.

~y ∼ Poisson(~λ), log(~λ) = X~β.

Alternatively, our model for the count outcome variable could be a negative binomial regression model as
follows.

~y ∼ NegBinomial(~λ, φ), log(~λ) = X~β,

where φ is the inverse dispersion parameter.

Fully Bayesian versions of all of these models would be straightforward extensions of the multiple linear
regression model in the previous section. For example, a Bayesian binary logistic regression with multiple
predictors can be found in the logitreg.stan.

// logitreg.stan
data {

int<lower=0> N;
int<lower=0> K;
matrix[N, K+1] X;
int<lower=0, upper=1> y[N];

// hyper parameters
real<lower=0> tau;

}

parameters {
vector[K+1] beta;

}

transformed parameters {
vector[N] mu;
mu = X * beta;

}

model {
// priors
beta ~ normal(0.0, tau);

// data model
y ~ bernoulli_logit(mu);

}

generated quantities{
vector[N] theta;
theta = inv_logit(mu);

}

This program is obviously similar to the normal linear regression model. The principal difference comes down
to the model of the outcome variables, specified in the following line.
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y ~ bernoulli_logit(mu);

Although not strictly necessary, we also include the following generated quantities block to calculate
~θ = ilogit(~µ), where ~µ = X~β.

generated quantities{
vector[N] theta;
theta = inv_logit(mu);

}

We can use this model with the following data set.

biochem_df <- read_csv('data/biochemist.csv')

This data gives us data from 915 PhD students. For each one, we have the number of peer reviewed
articles they have published (publications), as well their gender (gender), whether they are married or
not (married), how many children they have (children), a measure of the prestige of their institution
(prestige), and the number of publications of their research mentor (mentor). We can also create a new
variable that indicates if the PhD student obtained a publication or not.

biochem_df %<>% mutate(published = publications > 0)

This binary variable can be the outcome variable in a logistic regression analysis that analyses how the
probability of being published or not varies as a function of a set of predictor variables. We will use gender,
married, prestige, and mentor as predictors, and we will create a binary variable that indicates whether
the number of children that the PhD student has is greater than zero or not. As above, we will create the
design matrix for these predictors using modelr::model_matrix.

X <- model_matrix(~ gender + married + I(children > 0) + prestige + mentor,
data = biochem_df) %>%

as.matrix()

Here, gender will be coded such that Women is coded as 1 and Men is coded as 0. For the married variable,
Married is coded by 0 and Single is coded by 1. Now, we can create the necessary data for the Stan model.

y <- biochem_df %>% pull(published)

biochem_data <- list(y = y,
X = X,
N = nrow(X),
K = ncol(X) - 1,
tau = 100)

Here, with tau = 100, we set the standard deviation τ for the normal prior distribution over β0, β1 . . . βk . . . βK .
Now, we can call the Stan model with stan.

M_biochem <- stan('logitreg.stan', data = biochem_data)

We may view the summary of the posterior samples for ~β using stan_summary.

stan_summary(M_biochem, pars = 'beta')
## # A tibble: 6 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 beta[1] 0.570 0.00625 0.279 0.0293 1.11 1998. 1.00
## 2 beta[2] -0.236 0.00298 0.160 -0.561 0.0734 2876. 1.00
## 3 beta[3] -0.344 0.00364 0.187 -0.711 0.0147 2641. 1.00
## 4 beta[4] -0.436 0.00364 0.187 -0.801 -0.0582 2631. 1.00
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## 5 beta[5] 0.0203 0.00175 0.0807 -0.136 0.172 2119. 1.00
## 6 beta[6] 0.0819 0.000221 0.0131 0.0575 0.109 3516. 1.00

A Bayesian Poisson regression model can be implemented as a relatively minor extension of the logistic
regression model, as we see in the following program from the file poisreg.stan.

// poisreg.stan
data {

int<lower=0> N;
int<lower=0> K;
matrix[N, K+1] X;
int<lower=0> y[N];

// hyper parameters
real<lower=0> tau;

}

parameters {
vector[K+1] beta;

}

transformed parameters {
vector[N] mu;
mu = X * beta;

}

model {
// priors
beta ~ normal(0.0, tau);

// data model
y ~ poisson_log(mu);

}

generated quantities{
vector[N] lambda;
lambda = exp(mu);

}

The difference between this program and that of the logistic regression program occurs in three places. First,
in the following line in the data block, we indicate that the values of y are integers that are bounded by zero
but have no upper limit.

int<lower=0> y[N];

Second, in the following line in the model block, we indicate that y is modelled as a Poisson distribution.

y ~ poisson_log(mu);

Note that here, the distribution is poisson_log. This entails that the input argument vector, denoted
by mu, is the logarithm of the rate of the Poisson distribution. In other words, mu is ~µ = log(λ) from the
mathematical description above. To obtain the rate itself, we use the following generated quantities block.

generated quantities{
vector[N] lambda;
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lambda = exp(mu);
}

We will use the X design matrix as before, but set y to be publications, which gives the number of
publications for each student. Therefore, our input data list is as follows.

y <- biochem_df %>% pull(publications)

biochem_data_count <- list(y = y,
X = X,
N = nrow(X),
K = ncol(X) - 1,
tau = 100)

We then execute the program as follows.

M_biochem_pois <- stan('poisreg.stan', data = biochem_data_count)

We may then view the summary of the posterior samples for ~β using stan_summary as before.

stan_summary(M_biochem_pois, pars = 'beta')
## # A tibble: 6 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 beta[1] 0.456 0.00228 0.0967 0.268 0.642 1799. 1.00
## 2 beta[2] -0.218 0.00115 0.0565 -0.334 -0.108 2397. 1.00
## 3 beta[3] -0.152 0.00137 0.0650 -0.277 -0.0245 2243. 1.00
## 4 beta[4] -0.250 0.00135 0.0635 -0.373 -0.129 2201. 1.00
## 5 beta[5] 0.0105 0.000588 0.0263 -0.0408 0.0609 2008. 1.00
## 6 beta[6] 0.0258 0.0000264 0.00203 0.0218 0.0296 5943. 1.00

As a final example of a generalized linear model, let us consider a negative binomial model, which is suitable
for overdispersed count data. A Stan program implementing this is in negbinreg.stan.

// negbinreg.stan
data {

int<lower=0> N;
int<lower=0> K;
matrix[N, K+1] X;
int<lower=0> y[N];

// hyper parameters
real<lower=0> tau;

}

parameters {
vector[K+1] beta;
real<lower=0> phi;

}

transformed parameters {
vector[N] mu;
mu = X * beta;

}

model {
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// priors
beta ~ normal(0.0, tau);
phi ~ cauchy(0, 10);

// data model
y ~ neg_binomial_2_log(mu, phi);

}

generated quantities{
vector[N] lambda;
lambda = exp(mu);

}

The outcome variable is modelled a negative binomial with the key line.

y ~ neg_binomial_2_log(mu, phi);

Note that, as described above in the mathematical description, the mean of the negative binomial is given by
~λ where log(~λ) = X~β. Thus, in the Stan code, the mu corresponds to X~β. The negative binomial distribution
also has an additional parameter, φ. The higher the inverse of φ, the greater the overdispersion in the
distribution. Here, we put a Cauchy prior with a scale of 10 on φ.

phi ~ cauchy(0, 10);

We will use the same biochem_data_count as we used in the case of the Poisson distribution and then
execute the program as follows.

M_biochem_nb <- stan('negbinreg.stan', data = biochem_data_count)

We may then view the summary of the posterior samples for ~β using stan_summary as before.

stan_summary(M_biochem_nb, pars = 'beta')
## # A tibble: 6 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 beta[1] 0.391 0.00287 0.130 0.143 0.646 2044. 1.00
## 2 beta[2] -0.207 0.00131 0.0729 -0.353 -0.0660 3077. 1.00
## 3 beta[3] -0.144 0.00160 0.0849 -0.316 0.0234 2799. 1.00
## 4 beta[4] -0.230 0.00174 0.0867 -0.396 -0.0622 2474. 1.00
## 5 beta[5] 0.0157 0.000747 0.0352 -0.0511 0.0849 2228. 1.00
## 6 beta[6] 0.0294 0.0000512 0.00356 0.0226 0.0365 4838. 1.00

Multilevel models
A multilevel linear regression model, also known as a linear mixed effects model, can be written as follows:

yi ∼ N(µi, σ
2), µi = ~xi

~βzi
, for i ∈ 1 . . . n

where each zi ∈ 1 . . . J and each ~βj ∼ N(~b,Σ). In other words, as we have explained in Chapter 11, each
observation i is a member of subgroup or cluster zi, each cluster has its own set of regression coefficients,
e.g. cluster j has coefficients vector ~βj , and the set of J coefficients vectors are each drawn from a multivariate
normal distribution when mean vector ~b and covariance matrix Σ.

For simplicity here, we will consider a linear mixed effects model with one predictor variable. This can be
written as follows.

yi ∼ N(µi, σ
2), µi = β0zi

+ β1zi
xi, for i ∈ 1 . . . n,
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where each zi ∈ 1, 2, . . . J , and
~βj =

[
β0j ,
β1j

]
∼ N(~b,Σ)

where ~b = [b0, b1]ᵀ. The covariance matrix Σ can be written

Σ =
[
τ2

0 τ0τ1ρ
τ0τ1ρ τ2

1

]
,

where τ0 and τ1 are the standard deviations of the group level intercepts and slopes, respectively, and ρ is
their correlation coefficient.

In this model, we must specify priors for ~b, Σ and the residual standard deviation σ. Clearly, there are other
parameters in the model, namely ~β1, ~β2 . . . ~βJ . However, the prior for these is determined by the values of ~b
and Σ. A commonly used, even default, prior family for ~b is the normal distribution. If this is centered at zero
and has a relatively wide variance, then this is effectively an uninformative prior. For Σ, on the other hand,
we have more choices. One generally useful prior for Σ is the LJK (named after Lewandowski, Kurowicka,
and Joe (2009)) prior on its corresponding correlation matrix, and a separate prior on the variance terms. In
this example, however, because there is only one correlation coefficient term in the matrix, namely ρ, we will
put prior on that and then separate priors on τ0 and τ0. Finally, we will put a similar prior on σ.

A Stan program for this model is in the file lmm.stan.

// lmm.stan
data {

int<lower=1> N; // no. observations
int<lower=1> J; // no. groups

vector[N] y; // outcome
vector[N] x; // predictor
int<lower=0, upper=J> z[N]; // group index

}

parameters {
vector[2] b;
vector[2] beta[J];
real<lower=-1, upper=1> rho;
vector<lower=0>[2] tau;
real<lower=0> sigma;

}

transformed parameters {
cov_matrix[2] Sigma;
corr_matrix[2] Omega;
Omega[1, 1] = 1;
Omega[1, 2] = rho;
Omega[2, 1] = rho;
Omega[2, 2] = 1;
Sigma = quad_form_diag(Omega, tau);

}

model {

rho ~ uniform(-1, 1);
tau ~ cauchy(0, 10);
sigma ~ cauchy(0, 10);
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b ~ normal(0, 100);

beta ~ multi_normal(b, Sigma);

for (i in 1:N)
y[i] ~ normal(beta[z[i], 1] + x[i] * beta[z[i], 2], sigma);

}

In the model block, we specify Cauchy priors on sigma and tau, where the latter corresponds to the vector
[τ0, τ1]ᵀ, a uniform prior on ρ, and very diffuse normal distribution prior on the b vector. We also see
that beta, which corresponds to the set of J vectors β1, β2 . . . βJ , is distributed as a multivariate normal
distribution. Each individual observation, for i ∈ 1 . . . n, the model is yi ∼ N(µi, σ

2), µi = β0zi
+ β1zi

xi. In
the Stan program, this is implemented in the following lines.

for (i in 1:N)
y[i] ~ normal(beta[z[i], 1] + x[i] * beta[z[i], 2], sigma);

This model can be tested using the sleepstudy data set from lme4, which we explored in the previous
chapter.

sleepstudy <- lme4::sleepstudy

y <- sleepstudy$Reaction
x <- sleepstudy$Days
z <- sleepstudy$Subject %>% as.numeric()

sleep_data <- list(N = length(y),
J = length(unique(z)),
y = y,
x = x,
z = z)

M_lmm <- stan('lmm.stan', data = sleep_data)

The summary of the main paramters of this model is as follows, which are comparable to the results obtained
from the non-Bayesian lmer analysis of the same model.

stan_summary(M_lmm, pars = c('b', 'tau', 'rho', 'sigma'))
## # A tibble: 6 x 8
## par mean se_mean sd `2.5%` `97.5%` n_eff Rhat
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 b[1] 250. 0.108 6.91 237. 264. 4110. 1.00
## 2 b[2] 10.5 0.0250 1.64 7.15 13.6 4311. 0.999
## 3 tau[1] 24.4 0.141 6.32 13.8 38.2 2011. 1.00
## 4 tau[2] 6.31 0.0273 1.41 4.05 9.52 2686. 1.00
## 5 rho 0.129 0.00803 0.291 -0.419 0.698 1310. 1.01
## 6 sigma 25.9 0.0285 1.55 23.1 29.2 2939. 1.00

Posterior expectations
As mentioned in the introduction to this chapter, quantities of interest from a Bayesian model can be
expressed as posterior expectations that can be approximated using Monte Carlo integration:

〈g(θ)〉 =
∫
g(θ)P(θ|D)dθ ≈ 〈g(θ)〉 ≈ 1

n

n∑
i=1

g(θ̃i),
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where θ̃1, θ̃2 . . . θ̃n are posterior samples of the unknown variables in the model. In general, any quantity of
interest from a Bayesian model can be expressed in this way. For this reason, when we have the posterior
samples, any question of interest concerning the model may be addressed.

We can obtain each sample from each chain for any variables using rstan::extract as follows.

rstan::extract(M_dice, pars='theta', permuted=F, inc_warmup=T) %>%
magrittr::extract(,,1) %>%
as_tibble()

## # A tibble: 2,000 x 4
## `chain:1` `chain:2` `chain:3` `chain:4`
## <dbl> <dbl> <dbl> <dbl>
## 1 0.345 0.211 0.0784 0.233
## 2 0.345 0.211 0.0784 0.233
## 3 0.345 0.211 0.0784 0.233
## 4 0.345 0.332 0.367 0.307
## 5 0.342 0.332 0.341 0.307
## 6 0.346 0.325 0.253 0.293
## 7 0.276 0.332 0.277 0.311
## 8 0.328 0.291 0.324 0.324
## 9 0.295 0.291 0.288 0.312
## 10 0.262 0.297 0.279 0.312
## # ... with 1,990 more rows

(In this command, we use the extract function from both rstan and magrittr and so we use their namespaces
to distinguish between them). With rstan::extract, by using permute = F we obtain an array for each
parameter that we specify in pars, and get all samples including the warmup samples by inc_warmup. This
function returns a multi-dimensional array whose first dimension indexes the samples, the second indexes the
chains, and the third indexes the parameters.

The package tidybayes provides many useful functions from working with Stan based models, including
functions from extracting samples. For example, using the M_math_2 regression model described above, the
following extracts the (post-warmup) samples into a data frame with one row for each sample from each
chain.

library(tidybayes)
spread_draws(M_math_2, beta_0, beta_1, sigma)
## # A tibble: 4,000 x 6
## .chain .iteration .draw beta_0 beta_1 sigma
## <int> <int> <int> <dbl> <dbl> <dbl>
## 1 1 1 1 -23.1 0.907 7.69
## 2 1 2 2 -22.1 0.889 7.65
## 3 1 3 3 -21.9 0.885 7.55
## 4 1 4 4 -21.3 0.876 7.56
## 5 1 5 5 -21.6 0.882 7.57
## 6 1 6 6 -22.3 0.893 7.52
## 7 1 7 7 -24.6 0.928 7.50
## 8 1 8 8 -24.2 0.921 7.72
## 9 1 9 9 -22.2 0.893 7.63
## 10 1 10 10 -22.2 0.890 7.62
## # ... with 3,990 more rows

We these samples in this format, we may now easily compute quantities of interest. For example, let us
imagine we are interested in knowing the probability that someone could score greater than 50 on PlcmtScore
given that their SATM score was exactly 75. If we knew the true values of β0, β1, and σ, we would calculate
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this as follows.
P(y > 50|x = 75, β0, β1, σ) =

∫ ∞

50
N(y|µ = β0 + β1 × 75, σ)dy.

Integrating over the posterior distribution of β0, β1, and σ is as follows.

P(y > 50|x = 75) =
∫

P(y > 50|x = 75, β0, β1, σ)P(β0, β1, σ|D)dβ0, dβ1, dσ.

Using Monte Carlo integration, this integral is approximated as follows.

P(y > 50|x = 75) ≈ 1
S

S∑
i=1

P(y > 50|x = 75, β̃0s, β̃1s, σ̃s),

where β̃0s, β̃1s, σ̃s, for s ∈ 1 . . . S, are S samples from the posterior distribution. This calculation can be
easily performed using R. First, we write a function to calculate P(y > 50|x = 75, β0, β1, σ).

f <- function(beta_0, beta_1, sigma){
pnorm(50,

mean = beta_0 + beta_1 * 75,
sd = sigma,
lower.tail = F

)
}

We then compute this function for each sample from the posterior and calculate the average.

spread_draws(M_math_2, beta_0, beta_1, sigma) %>%
mutate(p = f(beta_0, beta_1, sigma)) %>%
summarise(prob = mean(p))

## # A tibble: 1 x 1
## prob
## <dbl>
## 1 0.251
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