Introduction to Mixed Effects Regression
Date: 20-21 June, 2024
Location: Liverpool John Moores University
In this two day course, we provide a comprehensive practical and theoretical introduction to multilevel models, also known as hierarchical or mixed effects models. On Day 1, we will begin by focusing on random effects multilevel models. These models make it clear how multilevel models are in fact models of models. In addition, random effects models serve as a solid basis for understanding mixed effects, i.e. fixed and random effects, models. In this coverage of random effects, we will also cover the important concepts of statistical shrinkage in the estimation of effects, as well as intraclass correlation. We then proceed to cover linear mixed effects models, particularly focusing on varying intercept and/or varying slopes regresssion models. On Day 2, we cover further aspects of linear mixed effects models, including multilevel models for nested and crossed data data, and group level predictor variables.
Back to top